
Robust Spectral Clustering: A Locality Preserving
Feature Mapping Based on M-estimation
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Abstract—Dimension reduction is a fundamental task in
spectral clustering. In practical applications, the data may
be corrupted by outliers and noise, which can obscure the
underlying data structure. The effect is that the embeddings no
longer represent the true cluster structure. We therefore propose
a new robust spectral clustering algorithm that maps each high-
dimensional feature vector onto a low-dimensional vector space.
Robustness is achieved by posing the locality preserving feature
mapping problem in form of a ridge regression task that is
solved with a penalized M-estimation approach. An unsupervised
penalty parameter selection strategy is proposed using the Fiedler
vector, which is the eigenvector associated with the second
smallest eigenvalue of a connected graph. More precisely, the
penalty parameter is selected, such that, the corresponding
Fiedler vector is ∆-separated with a minimum information loss
on the embeddings. The method is benchmarked against popular
embedding and spectral clustering approaches using real-world
datasets that are corrupted by outliers.

Index Terms—embedding, clustering, spectral clustering,
feature mapping, dimension reduction

I. INTRODUCTION

Dimension reduction and feature extraction are fundamental
in many clustering algorithms that have been intensively
researched for decades [1]-[4]. Spectral clustering (SC) is a
simple and effective tool that relies on the eigenfunctions of
the Laplace-Beltrami operator on a manifold to discover the
intrinsic structure hidden in the data. It has various applications
such as in face recognition and image segmentation [5].

A popular way of estimating eigenvectors of a Laplacian is
the method of Laplacian eigenmaps [1], which is a manifold
learning technique motivated by the correspondence between
the graph Laplacian and the Laplace-Beltrami operator on a
manifold. The term Laplacian eigenmaps refers to a nonlinear
method that embeds high-dimensional feature vectors into a
low-dimensional vector space while preserving certain local
properties. Locality Preserving Indexing (LPI) is motivated
by determining the optimal linear approximations to the
eigenfunctions of the Laplace Beltrami operator in an
attempt at discovering the inherent nonlinear structure. The
computational complexity of LPI can mainly be attributed to
computing a complete singular value decomposition (SVD)
and it has been reduced in [3]-[4], making such approaches
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attractive in practice. However, in real-world scenarios the
data may be corrupted by outliers and noise [6], leading
to a performance degradation. Existing robust algorithms for
spectral clustering have been proposed to minimize the effect
of outliers in representation space, e.g. [7] or in the projection
operation [8]. The robust projection operation as in [8], uses
the `1 norm that creates a different eigenbasis and it requires
prior information about the data, such as, representative
samples. To the best of our knowledge, an unsupervised robust
projection algorithm that uses the `2 norm as in the eigen-
decomposition of the original spectral clustering has not been
proposed in the literature.

To integrate robustness in spectral clustering, we propose
a robust locality preserving feature mapping (RLPFM) and
an unsupervised penalty parameter selection algorithm using
the geometric structure of well-spread embeddings. Building
upon regularized locality preserving indexing (RLPI), which
is a computationally efficient extension of the LPI framework
that regularizes the eigenvectors, we propose a robust M-
estimation approach to feature embedding to mitigate the effect
of outliers on the determination of the group structure. The
penalty parameter, which is a key factor for the performance
of RLPI, is selected, such that, the estimated Fiedler vector is
∆-separated with minimum information loss.

The remaining paper is organized as follows. Section II
briefly revisits LPI while Section III contains the motivation
and problem formulation. The proposed robust spectral
clustering method is detailed in Section IV. Section V
demonstrates the performance of the proposed method in
comparison to popular embedding and spectral clustering
approaches. Finally, conclusions are drawn in Section VI.

II. LOCALITY PRESERVING INDEXING FOR SPECTRAL
CLUSTERING

Suppose that a data matrix X = [x1,x2, . . . ,xn] ∈ Rm×n
with m denoting the dimension and n the number of feature
vectors, can be represented as a graph G = {V,E,W}
where V denotes the vertices, E represents the edges, and
W ∈ Rn×n is the nonnegative definite affinity matrix that is
computed from a similarity measure, e.g. cosine similarity.
Spectral clustering [1] maps the original m dimensional
feature vectors onto a smaller k dimensional vector space
by finding the eigenvectors associated with the k smallest
eigenvalues of the following eigen-problem
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Fig. 1: The eigenvectors associated with k = 3 smallest eigenvalues for a data matrix.

Ly = λDy, (1)
where y ∈ Rn denotes the eigenvector associated with the
eigenvalue λ, D ∈ Rn×n is a diagonal weight matrix with
overall edge weights di,i =

∑
j wi,j on the diagonal, and

L ∈ Rn×n is the Laplacian matrix defined by L = D−W.
According to the Theorem 2 in [2], for an eigenvector

y ∈ Rn with y = X>β, the LPI finds a transformation vector
β ∈ Rm that is the eigenvector associated with the smallest
eigenvalue of the generalized eigen-problem

XLX>β = λXDX>β (2)
with the same eigenvalue λ as in Eq. (1). This fundamental
property of LPI, gives identical solutions to the spectral
clustering if the data matrix X is a full rank square matrix.
Thus, building upon [3], the LPI basis functions can be
determined in two consecutive steps for spectral clustering.
First, the k eigenvectors y1, . . . ,yk associated with the k
smallest eigenvalues λ1 < · · · < λk in Eq. (1) is computed.
Then, for each eigenvector yj ∈ Rn, where j = 1, . . . , k,
LPI estimates a transformation vector βj ∈ Rm that satisfies
yj = X>βj by solving the following least squares problem

β̂j = argmin
βj

n∑
i

(β>j xi − yi,j)2, (3)

where yi,j is the ith mapping point in the jth eigenvector yj
and β̂j is the estimated jth transformation vector.

III. MOTIVATION AND PROBLEM FORMULATION
A. Motivation

To motivate the use of robust methods, this section provides
an illustrative discussion of possible outlier effects on spectral
clustering. Fig. 1a shows an example, where the data that
consists of n = 30 feature vectors can be separated into k = 3
disjoint clusters by the popular Laplacian eigenmaps method
[1], which analyzes the eigenvectors corresponding to the three
smallest eigenvalues. The ellipsoids around the yellow, blue,
and green feature vectors highlight the discovered clusters.
Fig. 1b uses the same dataset, except that six blue and green
points have been replaced by outliers that are marked as red
crosses. In the context of clustering, outliers are, generally
speaking, defined as data points that do not follow the cluster
structure that is inherent to the large majority of the data.
We can distinguish two different types of outliers: On the
one hand, an outlier may be a point that does not have any
similarity with any of the clusters. On the other hand, an
outlier may also be defined as a point that has considerable
similarity with multiple clusters. In both cases, as illustrated
in Fig. 1b, the outliers obscure the cluster structure inherent

to the eigenvectors. In this example, the popular Laplacian
eigenmaps method is not able to correctly split the data into
the yellow, blue and green clusters. Instead, it opens up a
cluster for the outliers that are not associated with any of
the clusters, and it fuses the yellow and blue data points into
a single cluster. Robust spectral clustering methods should
be designed to be less sensitive to outliers. M-estimation is
a widely used robust alternative to least-squares estimation
when the data is subject to heavy-tailed noise and outliers [6].
Building upon the concepts of robust statistics [6], we propose
an M-estimation approach, that down-weights outlying data
points in the objective function, as will be detailed in the next
section.
B. Problem Formulation

Given a dataset of feature vectors X ∈ Rm×n, the goal of
this work is to embed each feature vector into a k dimensional
space where k denotes the specified number of clusters.
Robustness implies that the method is not heavily affected
by a few outliers in the dataset.

IV. ROBUST SPECTRAL CLUSTERING

This section is dedicated to robust spectral clustering.
We first describe how we use penalized M-estimation for
robust locality preserving feature mapping. We then propose
a strategy for the penalty parameter selection. Finally, we
analyze the computational complexity. The pseudo-code is
given in Algorithm 1.
A. M-estimation for Locality Preserving Feature Mapping

Assume that the dataset X is corrupted by outliers and noise.
The mappings in dimension-reduced space can then be written
as yi,j = β>j xi + εi,j , (4)

where yi,j ∈ R denotes the mapping point for the ith feature
vector xi and jth transformation vector βj , and εi,j ∈ R
represents noise and additive outliers. For an embedding
operation from the m dimensional space to the k dimensional
space, the error vector ε ∈ Rn×1 is constructed by using
embedding errors of all feature vectors such that εi =

∑k
j εi,j ,

where εi ∈ ε denotes the embedding error of the ith feature
vector. Then, the transformation vector βj can be computed
using penalized ridge regression M-estimation [9] by solving
the following zero gradient equation

−
n∑
i=1

ψ
(εi
σ̂

)(x>i
σ̂

)
+ γβj = 0, (5)

where γ denotes the penalty parameter, σ̂ is a robust scale
estimate of ε and ψ is a bounded and continuous odd function
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called the score-function. A popular M-estimator is defined by
Huber’s function

ψ
(εi
σ̂

)
=

{
εi
σ̂ , for

∣∣ εi
σ̂

∣∣ ≤ c
csign

(
εi
σ̂

)
, for

∣∣ εi
σ̂

∣∣ > c
, (6)

where sign(x) is the sign function defined as sign(x) = x/|x|,
c is the tuning parameter that trades off robustness against
outliers and efficiency under a Gaussian distribution (see [6]
for a discussion). A common choice for σ̂ is the normalized
median absolute deviation [6] that is defined by

σ̂ = madn(ε) = 1.4826 ·med|ε−med(ε)|, (7)
with med(ε) being the median.

B. Theoretical Analysis
Using matrix-notation, the solution to Eq. (5) can conveniently
be written as

β̂j = (XΩX> + γσ̂2I)−1XΩy. (8)
Here, Ω ∈ Rn×n is diagonal weighting matrix defined by
Ω = diag(ω1, . . . , ωn) with ωi = ω

(
εi
σ̂

)
where

ω
(εi
σ̂

)
=

{
ψ
(
εi
σ̂

)
/
(
εi
σ̂

)
for εi

σ̂ 6= 0

1, for εi
σ̂ = 0

(9)

In the following Theorem, we show the link between the
proposed RLPFM algorithm and spectral clustering, whose
eigenvectors are obtained as a special case.
Theorem 1. Suppose y is the eigenvector of eigen-problem
in Eq. (2). Further, let Ω ∈ Rn×n and Ψ ∈ Rm×m be two
weighting matrices, such that, U>ΨU = I and V>ΩV = I.
If y is in the space spanned by the row vectors of the weighted
data matrix X∗ = XΩ, the corresponding transformation
vector β̂ estimated with RLPFM will be the eigenvector of
eigen-problem in Eq. (2) as γ deceases to zero.
Proof. See Appendix.

C. Penalty Parameter Selection
Motivated by the key role of the penalty parameter on the

performance of RLPI [3], and the analysis on the geometric
structure of well-spread `22-representations in [10], we propose
a penalty parameter selection algorithm, such that, every pair
of subsets si ∈ s and tj ∈ t is at least ∆ = φ(1/log−2/3n)
apart in `22 distance. The Fiedler vector, which is associated to
the second smallest eigenvalue is used to define these two sets.
Assume that for each γi ∈ γ = [γmin, . . . , γmax] ∈ RN , there
exists a Fiedler vector estimate ŷ

(γi)
2 that maps graph vertices

onto a real line for the ith penalty parameter γi. Based on
[10], for a suitable constant κ, the mapping points located
on the right and left hand side of κ can be used as initial
candidates for sets s and t. From the Fiedler vector properties
[11], the constant κ can be defined as κ = 0 for ŷ

(γi)
2 . By

definition, the mapping points must vary between zero and
one. Thus, after selecting the members of subsets s(γi) ∈ RNs
and t(γi) ∈ RNt associated with γi, the sets can be designed
using rescaled mappings as

s(γi) =
{
ȳ
(γi)
2,j : ŷ

(γi)
2,j > κ

}
t(γi) =

{
ȳ
(γi)
2,j : ŷ

(γi)
2,j ≤ κ

}
,

(10)

Algorithm 1: Robust Spectral Clustering
Input: A data X and affinity matrix W, k,Nmin

Eigenvector Estimation using RLPFM
for γi = γmin, . . . , γmax do

Initialization:
Evaluate the eigenvectors y1, . . . ,yk as in Eq. (1)
Get B = [β1, . . . ,βk] ∈ Rm×k for yk = X>βk
RLPFM
Compute the error vector ε ∈ Rn using Eq. (4)
where εi =

∑k
j εi,j for εi ∈ ε

Compute σ̂ via Eq. (7)
Calculate ωi = ω( εi

σ̂
), Ω = diag(ω), via Eq. (9)

Solve Eq. (8) and estimate β̂(γi)
1 , . . . , β̂

(γi)
k

Estimate ŷ
(γi)
1 , . . . , ŷ

(γi)
k for ŷ

(γi)
k = X>β̂

(γi)
k

∆-separated sets
Generate sets s(γi) and t(γi) via Eq. (10)
while Ns > Nmin and Nt > Nmin do

Create r ∈ RN
(γi)
r using Eq. (11) and update N (γi)

r

if s(γi) and t(γi) are ∆-separated then
break

end
end
Collect N (γi)

r into a vector h ∈ RN
end
Minimize the N (γi)

r and estimate γ̂ using Eq. (12)
Estimate B̂γ̂ = [β̂γ̂1 , . . . , β̂

γ̂
k ] ∈ Rm×k for γ̂

Estimate ŷ
(γ̂)
1 , . . . , ŷ

(γ̂)
k where ŷ

(γ̂)
k = X>β̂

(γ̂)
k

Partitioning
Get ĉk by applying the k-means on ŷ

(γ̂)
1 , . . . , ŷ

(γ̂)
k

Output: An estimated label vector ĉk for k clusters

where ŷ(γi)2,j and ȳ(ρi)2,j denote the jth element of the estimated
Fiedler vector ŷ

(γi)
2 and that of rescaled the ȳ

(γi)
2 for a

candidate penalty parameter γi, respectively. If ȳ
(γi)
2 is not

well-spread, it can contain pairs of points ȳ
(γi)
2,i ∈ s and

ȳ
(γi)
2,j ∈ t whose squared Euclidean distance is less than ∆

that will be discarded as long as two sets have a sufficient
number Nmin of mapping points, i.e.,

r(γi) =
{
ȳ
(γi)
2,i , ȳ

(γi)
2,j : ‖ȳ(γi)2,i − ȳ

(γi)
2,j ‖22 ≤ ∆

}
, (11)

where r(γi) ∈ RNr is a vector of discarded points from
subset s(γi) and t(γi). The penalty parameter γ is estimated
by minimizing the number of discarded points as

γ̂ = arg min
γi=γmin,...,γmax

{N (γi)
r }, (12)

where N (γi)
r denotes number of discarded points for candidate

penalty parameter γi.
D. Computational Complexity

The computational cost of operations is measured in flam
[12] which is a compound operation consisting one addition
and one multiplication. If the computational complexity is not
specified using flam, the well known Landau notation is used.
The RLPFM requires n(p2 − k2) to 2n(p2 − k2) flam for
the expansion and npk flam for the contraction phases for
the initialization of eigenvectors, where p is the number of
Lanczos basis vectors and k is the number of eigenvectors.
The weighting operation of M-estimation requires repetitive
medians that takes O(n) time. For a sparse matrix, the least
squares algorithm, such as, in [13] requires t(2ns+ 3n+ 5m)
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Dataset SC LPI RLPI FastEFM LSC RLPFM

Fisheriris [15] 66.0 98.0 98.0 96.6 92.9 98.0
B. Cancer [16] 62.9 88.2 87.4 72.1 85.4 87.0
Ionosphere [17] 64.4 51.9 71.2 68.4 71.5 70.4
Parkinson [18] 50.4 53.2 60.4 61.0 52.1 60.0
Sonar [19] 54.3 55.3 56.3 54.6 51.1 60.6

TABLE I: k-means partitioning performance for real-world
datasets. The average probability of detection shown in %

where t is the number of iterations and s is the average number
of nonzero features. However, if the matrix is dense, Cholesky
decomposition requires O(n3) and in particular 1

6n
3 flam [12].

Lastly, the ∆-seperated sets step requires O(nlogn) time for
sorting and a maximum of n flam for discarding for each
candidate γ. In summary, for a sparse matrix the RLPFM step
requires from

Nγt(2ns+ 3n+ 5m) + n(p2 − k2 + pk +Nγ)

to
Nγt(2ns+ 3n+ 5m) + n(2p2 − 2k2 + pk +Nγ)

flam in addition to O(Nγn), O(Nγnlogn) for repetitive
medians and sorting where Nγ is the number of candidate
penalty parameters.

V. EXPERIMENTAL RESULTS

In this section, the proposed RLPFM is compared with five
state-of-the-art methods including embedding approaches LPI
[2] and RLPI [3] and spectral clustering approaches SC [1],
fast large-scale spectral clustering via explicit feature mapping
(FastEFM) [4], large scale spectral clustering with landmark-
based sparse representation (LSC) [14]. The numerical
experiments are performed with real-world databases Fisher’s
iris (Fisheriris) [15], diagnostic breast cancer (B. Cancer)
[16], ionosphere [17], replicated acoustic features of Parkinson
disease (Parkinson) [18], and connectionist bench (Sonar) [19]
from the UCI machine learning repository. The parameter
Nmin for ∆-separated sets is defined as Nmin = n

10 where
different values of Nmin do not have a huge impact as long as
Nmin is a reasonably small value. To analyze performance
numerically, average clustering accuracy P̄acc is calculated
by averaging clustering results for NE = 100 repetitions
and RLPI is performed with the proposed penalty parameter
selection method to provide a fair comparison.

The clustering accuracy results are summarized for six
different methods on five real-world datasets using k-means
partitioning in Tab. I. As can be seen, the SC shows
poor performance in terms of average clustering accuracy
of 59.6% whereas almost all other clustering approaches
have an average accuracy greater than 70%. The proposed
RLPFM outperforms all its competitors with 75.2% and RLPI
follows it by a narrow margin reaching 74.7% which indicates
that the proposed penalty parameter selection algorithm is
a promising approach that can be used in other regularized
feature mapping algorithms. We also implemented a simple
plug-in robustification that replaces k-means by k-medoids,
however, it did not improve the partitioning results, and is
therefore not reported in detail.

(a) SC (b) SC corrupted

(c) RLPI (d) RLPI corrupted

(e) RLPFM (f) RLPFM corrupted

Fig. 2: Estimated example feature spaces for Fisheriris dataset.

A. Robustness
To evaluate robustness against outliers, we contaminated

the Fisheriris dataset as follows. The outliers were generated
as x̃i = xi + σr, where r denotes a vector of uniformly
distributed random numbers in the interval U(0, 1), σ is a
constant, xi and x̃i are the original and corrupted ith feature
vector for a randomly selected i, respectively. The examples
of estimated eigenvectors for k = 3 clusters are shown in
Fig. 2 for the original and corrupted cases. For the corrupted
case, the examples shown for σ = 5 and the number of
outliers in per cluster Nout = 15. Fig. 2a shows that, even
the original Fisheriris dataset results in an outlier in the SC
mappings that causes the method to break down. Figs. 2c
and 2e show that both the RLPI and the proposed RLPFM
produce similar and accurate mapping results for the original
data. For corrupted data, Figs. 2d and 2f show that RLPFM
and RLPI approximately preserve the cluster structure, and
RLPFM reduces the effect of outliers by mapping them closer
to the cluster centers.

The clustering accuracy is detailed according to different σ
and Nout values in Fig. 3 and Fig. 4, respectively. Even though
most of the algorithms have a clustering accuracy of more
than 90% in the beginning, the performance of the competitors
drops significantly after σ = 3. The proposed method is also
more robust for an increasing number of outliers while its
main competitor RLPI follows it by approximately margin of
10%.

VI. CONCLUSION

We proposed an unsupervised RLPFM including a penalty
parameter selection approach for spectral clustering. The
eigenvectors of a Laplacian matrix were reweighted and
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Fig. 3: P̄acc for increasing number of σ values (Nout = 15).

penalized by optimizing the penalty parameter, such that, the
corresponding Fiedler vector is ∆-separated with minimum
information loss. The method was benchmarked on different
real-world datasets and it showed promising performance
compared to five popular competitors, especially in terms of
robustness against outliers and noise.

APPENDIX

Suppose that rank(X) = τ , the SVD of X is X = UΣV>,
where Σ = diag(Σ1, . . . ,Στ ), U ∈ Rm×τ , V ∈ Rn×τ and
that U>U = V>V = I. Then, for the weighted singular
value decomposition (WSVD) [20]

X∗ = UΣV>Ω,

where Ω ∈ Rn×n is square positive definite symmetric weight
matrix such that V>ΩV = I. Let V∗ be a weighted matrix
whose columns are weighted orthonormal eigenvectors of V as
V∗ = ΩV. Then, the orthogonality term can be also written as
V>V∗ = I. If y is in the space spanned by column vectors of
V∗, y is spanned by row vectors of the weighted data matrix
X∗. Thus, y can be represented as a unique linear combination
of column vectors V∗ where column vectors of V∗ are linearly
independent. For a set of combination coefficients b ∈ Rτ

V∗b = y ⇒ ΩVb = y ⇒ V>ΩVb = V>y ⇒ b = V>y

Substituting b = V>y into V∗b = y yields V∗V>y = y.
Using the pseudo inverse of data matrix X† and weighted data
matrix (X∗)† which can be written as

X† = VΣ−1U> and (X∗)† = VΣ−1U>Ψ,

for γ → 0, X∗ = UΣV>Ω and X = UΣV>, Eq. (5) gives

β̂ = UΣ−1V>VΣ−1U>ΨUΣV>Ωy

= UΣ−1V>VV>Ωy

= UΣ−1V>y.

Further, if we insert β̂ into ŷ = X>β̂

ŷ = X>β̂ = VΣU>UΣ−1V>y = y

β̂ is the eigenvector of eigen-problem in Eq. (2).
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