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∗ CentraleSupélec, CNRS, Univ. Paris Saclay, † LEME, University Paris Nanterre, ‡ LISTIC, University Savoie Mont-Blanc

Abstract—The information geometry of the zero-mean t-
distribution with Kronecker-product structured covariance ma-
trix is derived. In particular, we obtain the Fisher information
metric which shows that this geometry is identifiable to a product
manifold of S++

p (positive definite symmetric matrices) and sS++
p

(positive definite symmetric matrices with unit determinant).
From this result, we obtain the geodesics and the Riemannian
gradient. Finally, this geometry makes it possible to propose an
on-line covariance matrix estimation algorithm well adapted to
large datasets. Numerical experiments show that optimal results
are obtained for a reasonable number of data.

Index Terms—covariance, robust estimation, kronecker prod-
uct, Riemannian geometry, on-line estimation

I. INTRODUCTION

Kronecker product structured covariance matrices occur
in many applications such as MIMO communication [1],
MEG/EEG data analysis [2], and separable statistical models
[3]. Numerous works were thus devoted to estimate the factors
of these Kronecker products from a given set of normally
distributed measurement, see e.g. [4], [5] and reference therein.
All these references assume a that data follow a Gaussian
distribution. It is well known that this assumption is not real-
istic in many practical situations as RADAR [6], [7], SONAR
[8] or in remote sensing [9]. Recent extensions considered
the more general elliptical models [10] in order to derive
estimation methods that are robust to samples possibly drawn
from heavy-tailed distributions. Notably, [11], [12] studied
the uniqueness/existence of the maximum likelihood estimator
from normalized samples that follows a centered elliptical
distribution, [13] proposed majorization-minimization algo-
rithms for robust estimation of the Kronecker products factors,
[14] proposed and studied the asymptotic the distribution of
algorithms based on the extended invariance principle when
these factors admit a linear structure.

Even if the obtained estimators have interesting perfor-
mance, they suffer of a major practical issue: existing robust
estimation methods in the considered context are computation-
ally intensive. Indeed, these robust estimators satisfy intricate
fixed-point equations, and thus, require iterative procedures
to be computed. This can be a limitation, e.g. in large time-
series analysis, where such computation cannot be be carried
out each time a new sample is added to the batch [15]. In this
configuration, a simple idea can be to update the robust covari-
ance estimator as soon as a new data occurs without computing
the fixed-point equations. A possible solution is given in

the reference [16], which proposes a new on-line estimation
algorithm to estimate the parameters of a CES distribution.
Applying this approach requires to consider the information
geometry (i.e., geometry of the parameter space induced by the
Fisher information metric) of the model/parameters, which has
not been derived for Kronecker product structured matrices.
Therefore, in this paper, we propose to fill this gap and the
contributions are summarized as follows:
• We focus on estimation procedures for Kronecker product
structured covariance matrices formulated as the maximum
likelihood estimator of the real multivariate t-distribution.
This distribution family is especially interesting in robust
estimation, as it can accounts for heavy tails, and includes
both Cauchy and Gaussian distributions as special (or limit)
case [10].
• We study the information geometry of the corresponding
statistical model. This geometry turns out to be identifiable
to the one of the product manifold of S++

p (positive definite
symmetric matrices) and sS++

p (positive definite symmetric
matrices with unit determinant) with a specific choice of
(separable) affine invariant metric as in [17]. Thus well known
results for these manifolds [18], allow us to obtain usual tools
such as geodesics and Riemannian gradient.
• These tools are used to propose a new on-line estimation
algorithm, relying on the methodology proposed in [16].
• Finally, the proposed algorithm is validated by a numerical
experiment showing that the online procedure allows to obtain
an optimal result in settings that are achievable in practical
situations.

II. MODEL

The data set {xi}ni=1 ∈ (Rp)n is assumed to contain
independent and identically distributed vectors drawn from the
multivariate real Student t-distribution with unknown scatter
matrix Σ and known d ∈ N∗ degrees of freedom. The model,
denoted x ∼ Rtd(0,Σ), implies that the probability density
function of x is of the form

f(x) ∝ |Σ|−1/2

(
1 +

xTΣ−1x

d

)−(d+p)/2

. (1)

Furthermore, the scatter matrix Σ is assumed to admit a
Kronecker product structure, i.e., Σ = A ⊗ B, where A ∈
sS++

a = {M ∈ S++
a : |M | = 1} and B ∈ S++

b . To avoid
any scaling ambiguity on Σ, an arbitrary normalization on A
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(or B) is needed. We choose the unit determinant one, which,
as noted in [15], [19], is particularly advantageous from a
geometrical point of view.

The parameter of interest θ = (A,B) thus lies in the
product manifold Ma,b = sS++

a × S++
b and the corre-

sponding covariance matrix is obtained through the mapping
ϕ :Ma,b → S++

p such that

ϕ(θ) = A⊗B. (2)

The negative log-likelihood on Ma,b corresponding to (1) is
(up to an additive constant):

L({xi}ni=1; θ) =

n∑
i=1

ρ(xTi ϕ(θ)
-1xi) +

n

2
log |ϕ(θ)|, (3)

where ρ(t) = (d+p)
2 log(d+ t).

III. INFORMATION GEOMETRY OFMa,b INDUCED BY THE
t-DISTRIBUTION

In this section, we study the Riemannian geometry ofMa,b

equipped with the Fisher information metric induced by the
likelihood (3). By definition, the tangent space of Ma,b at θ
is TθMa,b = TAsS++

a ×TBS++
b . The tangent space TBS++

b

can be identified to Sb (symmetric matrices) while

TAsS++
a = {ξA ∈ Sa : tr(A−1ξA) = 0}. (4)

In the following, ξ = (ξA, ξB) and η = (ηA,ηB) denote
two elements from TBS++

b . The Fisher information metric
on Ma,b induced by the t-distribution is provided in Proposi-
tion 1.

Proposition 1. Given θ ∈ Ma,b, ξ and η ∈ TθMa,b, the
Fisher information metric on Ma,b induced by the likeli-
hood (3) is

〈ξ, η〉θ = αb tr(A−1ξAA
−1ηA) + αa tr(B−1ξBB

−1ηB)

+ (α− 1)a2 tr(B−1ξB) tr(B−1ηB),

where α = (d+p)/(d+p+1).

Proof. From [20, Proposition 7], we have

〈ξ, η〉θ = 〈Dϕ(θ)[ξ],Dϕ(θ)[η]〉
S++
p

ϕ(θ) ,

where 〈·, ·〉S
++
p
· is the Fisher metric of the t-distribution on

S++
p and the directional derivative of ϕ at θ in the direction
ξ is

Dϕ(θ)[ξ] = A⊗ ξB + ξA ⊗B.

From [17], we know that

〈ξΣ,ηΣ〉
S++
p

Σ = α tr(Σ−1ξΣΣ−1ηΣ)

+ (α− 1) tr(Σ−1ξΣ) tr(Σ
−1ηΣ).

The result is obtained by plugging Dϕ(θ)[·] into 〈·, ·〉S
++
p
·

and exploiting the relations (M ⊗ N)(O ⊗ P ) = MO ⊗
NP , tr(M ⊗ N) = tr(M) tr(N) and tr(A−1ξA) =
tr(A−1ηA) = 0 (by definition of the tangent space at A).

One can notice that the metric is separable into two scaled
Riemannian affine invariant metrics applying on A and B,
respectively. The geometry resulting from such a product
manifold metric is simply obtained by combining the ge-
ometries corresponding to each component. In particular, the
Riemannian exponential mapping at θ ∈ Ma,b is defined for
ξ ∈ TθMa,b as

exp
Ma,b

θ (ξ) =
(
A exp(A−1ξA),B exp(B−1ξB)

)
. (5)

This exponential mapping is very useful when it comes to
optimizing a cost function on the manifold. However, for better
numerical cost and stability, it might be advantageous to prefer
a second order approximation, defined as

Rθ(ξ) =

(
A+ ξA +

1

2
ξAA

−1ξA,

B + ξB +
1

2
ξBB

−1ξB

)
. (6)

IV. ONLINE ESTIMATION

Given some data {xi}ni=1, the goal is to obtain the max-
imum likelihood estimator θ = (A,B) in Ma,b, which is
solution to the optimization problem

argmin
θ∈Ma,b

L({xi}ni=1; θ) =
∑
i

`i(θ), (7)

where

`i(θ) =
d+ p

2
log(d+ xTi ϕ(θ)

−1xi) +
1

2
log |ϕ(θ)|.

This problem can be solved on the manifold by means of
Riemannian optimization [18]. In the simple case of the
gradient descent, given iterate θk, one first needs to obtain
the Riemannian gradient of the cost function

∑
i grad `i(θk).

The next iterate is then obtained as

θk+1 = Rθk(−tk
∑
i grad `i(θk)), (8)

where Rθk is given in (6) and tk is a stepsize which can for
instance be computed with a line-search.

In some scenarios, the whole data may not be available
during the optimization process, either because of practical
dimensionality issues, or because it has not been recorded yet.
In such a case, one can turn to online optimization algorithms
based on stochastic gradient descent, as for instance considered
in [15], [16]. At each iteration, only one data xi is exploited
in order to update the estimated solution. For 1 ≤ i ≤ n, given
iterate θi, the next iterate is obtained as

θi+1 = Rθi

(
−1

i
grad `i(θi)

)
. (9)

This procedure has the advantage of being lighter than the
usual one in terms of computational cost while still providing
some convergence properties [16]. In order to apply it to the
optimization problem of interest, it remains to compute the
Riemannian gradient of `i according to the metric of Propo-
sition 1. This Riemannian gradient is given in Proposition 2.
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Proposition 2. The Riemannian gradient of `i at θ ∈ Ma,b

according to the metric of Proposition 1 is given by

grad `i(θ) =

(
1

αb
PA(A sym(∇A`i(θ))A),

1

αa
B sym(∇B`i(θ))B −

(α− 1) tr(B∇B`i(θ))

α(α+ (α− 1)p)
B

)
,

where sym(·) returns the symmetrical part of its argument;
PA : Sa → TAsS++

a is the orthogonal projection map such
that

PA(ξA) = ξA −
tr(A−1ξA)

a
A;

and ∇`i(θ) = (∇A`i(θ),∇B`i(θ)) is the Euclidean gradient
of `i at θ, defined as

∇A`i(θ) =
1

2
A−1

(
bA− d+ p

d+Qi(θ)
MT

i B
−1M i

)
A−1,

∇B`i(θ) =
1

2
B−1

(
aB − d+ p

d+Qi(θ)
M iA

−1MT
i

)
B−1,

with M i, the b × a matrix such that vec(M i) = xi and
Qi(θ) = tr(A−1MT

i B
−1M i).

Proof. Recalling that xTi ϕ(θ)
−1xi = tr(A−1MT

i B
−1M i)

and |A⊗B| = |A|b|B|a allows to write `i as

`i(θ) =
(d+ p)

2
log(d+Qi(θ)) +

b

2
log |A|+ a

2
log |B|.

Its directional derivative is

D `i(θ)[ξ] =
1

2

(d+ p)

d+Qi(θ)
DQi(θ)[ξ]

+
b

2
tr(A−1ξA) +

a

2
tr(B−1ξB),

where

DQi(θ)[ξ] = − tr(A−1ξAA
−1MT

i B
−1M i)

− tr(A−1MT
i B
−1ξBB

−1M i).

The Euclidean gradient ∇`i(θ) of `i at θ is then given by
identification

D `i(θ)[ξ] = tr(∇A`i(θ)ξ
T
A) + tr(∇B`i(θ)ξ

T
B).

The Riemannian gradient according to the metric of Proposi-
tion 1 is obtained from the Euclidean one through identifica-
tion

〈grad `i(θ), ξ〉θ = tr(∇A`i(θ)ξ
T
A) + tr(∇B`i(θ)ξ

T
B),

and projection onto the tangent space.

V. NUMERICAL RESULTS

In this section, we compare the performance of the maxi-
mum likelihood estimator obtained with a usual Riemannian
optimization algorithm1 and of the one obtained with the on-
line procedure. In order to do so, we perform Kronecker

1Note that some other optimization method can still be envisioned to
compute the MLE. However, the performance in terms of estimation accuracy
is not expected to vary because the g-convexity of the objective function [11]

product structured covariance estimation of simulated data
drawn from the multivariate Student t-distribution with d = 3
(highly non-Gaussian) and d = 100 (almost Gaussian) degrees
of freedom.

To generate a p×p (p = 16) covariance matrix, we compute

Σ = A⊗B,
A = UAΛAU

T
A, B = UBΛBU

T
B,

(10)

where a = b = 4,
• UA and UB are random orthogonal matrices,
• ΛA and ΛB are diagonal matrices whose minimal and

maximal elements are 1/
√
c and

√
c (c = 10 is the

condition number with respect to inversion); their other
elements are randomly drawn from the uniform distribu-
tion between 1/

√
c and

√
c; the determinant of ΛA is then

normalized.
100 sets {xi}ni=1 are drawn from the multivariate Student t-
distribution with covariance Σ and d ∈ {3, 100} degrees of
freedom, where n ∈ J1, 500K.

For this experiment, we consider the following estimators:
• the classical maximum-likelihood estimator obtained with

Riemannian gradient descent (GD). Optimization for this
estimator is performed with manopt toolbox [21].

• the online version obtained through stochastic gradient
descent (SGD) presented in Section IV.

Both algorithms are initialized with θ0 = (Ia, Ib).
In order to measure the performance of the estimators, we

consider an error measure for each component A and B,
which are given by the usual Riemannian distances on sS++

a

and S++
b

err(Â) = ‖log(A−1/2ÂA
−1/2)‖22,

err(B̂) = ‖log(B−1/2B̂B
−1/2)‖22.

(11)

The results are presented in Figure 1. First, we notice that
the on-line version converges to the classical estimate for
both values of d which is expected as stated in [16]. For a
small number of samples, the error for the quasi-Gaussian
configuration is around 4-5 dB for the estimation of A and
B. However, we notice that the error is much smaller (around
1 dB) for the heavy-tailed configuration. This preliminary
result shows that the on-line version can be used in real
applications when the number of the samples of the dataset
becomes too large to use classical robust estimators.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have developed a new on-line estimation
algorithm for the Kronecker-product structured covariance
matrix when data follow a real Student t-distribution. This
algorithm is based on tools of the Riemannian geometry
resulting from the Kronecker product of two symmetric posi-
tive definite matrices. Numerical experiments show achievable
results for a small size of the data set.

Future works will be devoted to the extension of the
approach to complex data and to the whole class of complex
elliptically symmetric distributions. We will also test our
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Fig. 1. Mean of error measures on A (top) and B (bottom) of the classical gradient descent method (GD) and its on-line counterpart (SGD) as functions
of the number of samples n. Means are computed over 100 simulated sets {xi}ni=1 with d = 3 (left) and d = 100 (right). The data size is p = 16 and
a = b = 4.

algorithm on different applications such as RADAR MIMO
in order to detect targets [1] or to detect changes in large
time series of SAR images [9]. In these applications the
computational cost to obtain robust estimators is too expensive
and the on-line procedure seems to be an interesting opening.
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