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Abstract—The multivariate t (MVT)-distribution is a widely
used statistical model in various application domains, mainly
due to its adaptability to heavy-tailed data. However, estimating
the degree of freedom (d.o.f) parameter, that controls the shape
of the distribution, remains a challenging problem. In this work,
we develop a novel methodology and design various algorithms
for estimating the d.o.f parameter. More precisely, based on a
key relationship between scatter and covariance matrices for the
t-distribution, the estimator is derived from the expectation of a
particular quadratic form and is proved to converge although the
classical independence assumption is not fulfilled. finally, some
preliminary simulations show the improvement of the proposed
approach with respect to state-of-the-art methods.

Index Terms—Multivariate t-distribution, M-estimators, Ma-
halanobis distance.

I. INTRODUCTION

In many applications, the covariance matrix is a key
parameter for data processing (e.g., for dimension reduction,
detection, clustering/classification). Since this parameter is
unknown in practice, an estimator is required. On the other
hand, the standard Gaussian assumption is not always adapted
due to various phenomena: data heterogeneity, presence of
outliers, etc. This is the case for instance in radar signal
processing or in financial data [1]. In this work, we assume
that the number n of observations is greater than each
observation dimension p, i.e., n > p and, we consider an
M-estimator of scatter matrix [2], adapted to various statistical
models, possibly far from the Gaussian one.

We assume that the data set x1, . . . ,xn is an i.i.d. sample
from a p-variate zero-mean multivariate t(MVT)-distribution,
with ν > 0 degrees of freedom (d.o.f.). The MVT distribution
is a sub-class of Elliptically Symmetric (ES) distribution; see
[3], [4]. The probability distribution function (pdf) of a zero-
mean MVT distribution, denoted x ∼ tν(0,Σ), is

f(x) = C|Σ|−1/2
(
1 +

x>Σ−1x

ν

)−(p+ν)/2
, (1)

The work of F. Pascal has been partially supported by DGA under grant
ANR-17-ASTR-0015. The work of D. P. Palomar was partially supported by
the Hong Kong GRF 16207019 research grant.

where Σ is a positive definite symmetric matrix parameter,
called the scatter matrix, and C is a normalizing constant
ensuring that f(x) integrates to 1. In this paper, both Σ and
ν > 0 are unknown parameters that need to be estimated.
The d.o.f. parameter ν > 0 determines the shape of the
distribution. For ν → ∞, the pdf reduces to multivariate
normal distribution, while ν = 1 corresponds to multivariate
Cauchy distribution.

For a given fixed value of ν, an estimate Σ̂ of Σ can be
found by maximizing the log-likelihood function of the data
w.r.t. to Σ. This leads to solving the following estimating
equation

Σ̂ =
1

n

n∑
i=1

p+ ν

ν + x>i Σ̂
−1

xi
xix
>
i . (2)

Note that Σ̂ depends on ν. When ν corresponds to the
true value of the d.o.f. parameter of the data, then Σ̂ is
the Maximum Likelihood estimator (MLE) of Σ. When ν
is misspecified, Σ̂ is an M-estimator of the scatter matrix
Σ. For a comprehensive study of M-estimators and the
ML-estimation of t-distribution, see [5].

Since the t-distribution is a compound Gaussian distribution
(i.e., a scale mixture of Gaussian), it has a stochastic decom-
position

xi =d τi zi, (3)

where for i = 1, . . . , n, zi ∼ Np(0,Σ) and τi positive
random variable, with τ−1i ∼ Gam(ν/2, 2/ν), independent
of zi. Notations Np(0,Σ) and Gam(a, b) respectively stand
for the multivariate Normal distribution with zero-mean and
covariance matrix Σ, and the Gamma distribution with shape
parameter a and scale parameter b. As in [6], we call zi-s as
Gaussian cores. The scatter matrix parameter Σ is a scaled
copy of the covariance matrix R = E[xix>i ], namely,

R = θΣ (4)

where
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θ =
E[r2]
p

=
ν

ν − 2
(5)

and r2 = ‖Σ−1/2x‖2 is the squared Mahalanobis distance of
x w.r.t. Σ. Note that (3) implies that r2 =d τ

2‖Σ−1/2zi‖2,
where ‖Σ−1/2zi‖2 ∼ χ2

p. Thus the expected value of r2 is
just the product of E[τ2] · p since E[χ2

p] = p. This yields then
(5) by using that τ−1 ∼ Gam(ν/2, 2/ν).

It is worthwhile to point out that if the interest is to
estimate the covariance matrix R, then one is forced to
estimate both ν and Σ simultaneously. Moreover, in most
situation, the d.o.f. parameter ν is unknown and needs to
estimated. The quality of the estimate of Σ depends really on
how accurately we are able to estimate ν. This is the main
purpose of this work.

The paper is organized as follows: Section II presents
the background on MVT distributions as well as existing
methods for estimating ν. Then, Section IV provides the main
contribution of this work by deriving an improved estimator of
ν and the associated algorithm. Finally, Section V highlights
the interest of the proposed approach on simulated data while
Section VI draws some conclusions and perspectives.

II. ALTERNATIVE ESTIMATORS OF ν

Recently, in [7], we proposed a method to estimate ν which
we describe below. Denote η = tr(Σ)/p and let

S =
1

n

n∑
i=1

xix
>
i .

denote the sample covariance matrix (SCM) based on the
data. Then by (4) and (5), one has that tr(R)/p = (ν/(ν −
2)) tr(Σ)/p. This means that

ν

ν − 2
=

tr(R)

tr(Σ)
= ηratio

from which we obtain the relation

ν =
2ηratio

ηratio − 1
. (6)

Then given that one has an estimate Σ̂ of Σ found by solving
Eq. (2) with the current guess of d.o.f. parameter ν, one may
compute an estimate η̂ratio = tr(S)/ tr(Σ̂) which provides
an estimate, denoted ν̂(0) via (6). This idea gives rise to an
iterative algorithm to estimate ν detailed in [7]. The initial
estimate is ν̂K = 2/max(0, κ̂) + 4, where κ̂ is the estimate
of elliptical kurtosis (see [8]).

Other estimators for ν have been proposed in the literature.
One can cite for instance, the ML estimation of ν̂ via the
Expectation-Maximization (EM) approach [9]. Unfortunately,
this estimator is rather unstable [10]. Another estimator based
on the Hill estimator [11] has been recently proposed (see

Eq. (26) of [12]).

III. PRELIMINARIES

Given ν is known, it has been shown in [6] that the MLE
Σ̂ has the same properties than a Gaussian-Core Wishart
Equivalent, defined as the SCM built from the Gaussian cores
z1, . . . , zn, i.e.,

Σ̂GCWE =
1

n

n∑
i=1

ziz
>
i (7)

where the z1, . . . , zn are the Gaussian-distributed vectors in
the stochastic decomposition of Eq. (3). This estimator is
referred to as the GCWE of Σ̂. It is important to notice that
this matrix cannot be computed in practice (since zi-s are
unobserved), but represents a theoretical equivalent.

Then, equipped with this new concept, one has that (see
real case of Theorem III.1 of [6] for details)

Σ̂ ∼
app

σΣ̂GCWE (8)

where σ > 0 is a solution to an equation

E
[
ψ

(
r2

σ

)]
= p, (9)

where ψ(t) = t(p+ν)/(ν+t) and r2 = ‖Σ−1/2x‖2 as earlier,
Note when ν is known, then σ = 1.

Then using the Shermon-Morrison formula1, it holds that

r̃2i
p
=

z>i Σ̂
−1
GCWEzi

p
=

1

p

z>i Σ̂
−1
GCWE,(i)zi

1 +
1

n
z>i Σ̂

−1
GCWE,(i)zi

,

where

Σ̂GCWE,(i) = Σ̂GCWE −
1

n
ziz
>
i =

1

n

n∑
k=1
k 6=i

zk z>k , (10)

implying that Σ̂GCWE,(i) is independent of zi.

The most important consequence of (8) is that the statistical
properties of Σ̂ are very well approximated by the Σ̂GCWE,
that follows a Wishart distribution since z1, . . . ., zn is an i.i.d.
sample from Np(0,Σ). Consequently, one will study

r̃2i = x>i Σ̂
−1
GCWExi

instead of r̂2i = x>i Σ̂
−1

xi in the following. See also [6] for
equivalent Mahalanobis distances. We now prove a result that
will be used in the sequel.

1For any invertible square matrix A, p-vector z, and positive scalar τ , it
holds that (A+ τzz>)−1z = A−1z/(1 + τz>A−1z).
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Proposition 1. Given {zi}ni=1
iid∼ Np(0,Σ), one has that

1

n

n∑
i=1

z>i Σ̂
−1
GCWE,(i)zi

p

a.s.−−−−→
n→∞

1

(
=

E[z>i Σ−1zi]

p

)
.

where Σ̂GCWE,(i) is defined in (10).

Proof. Proof is detailed in Appendix A.

IV. AN IMPROVED ESTIMATE OF ν

In this section, we derive a new estimator, denoted ν̂POP ,
of the d.o.f. parameter ν.

From (5) one obtains the following key equation

ν =
2 θ

θ − 1
(11)

Consequently, estimating ν will rely on the capability to
estimate the quantity θ = E

[
r2
]
/p, that is the expectation

of the Mahalanobis distance with µ = 0. However, Σ
is unknown. We propose a strategy to estimate θ that is
well-suited to the case of high-dimensional settings, namely
n, p→∞ and p/n→ c ∈ [0, 1), referred to as RMT regime.

Proposition 2. Suppose {xi}ni=1
iid∼ tν(0,Σ), where d.o.f.

parameter ν > 0 is known and Σ is unknown. Then θ̂ below
is a consistent estimator of θ:

θ̂ = (1− p/n)
1

n

n∑
i=1

x>i Σ̂
−1
(i)xi

p
, (12)

where Σ̂(i) is the MLE defined in equation (2) computed with
all observations except xi, i.e.,

Σ̂(i) =
1

n

∑
j 6=i

p+ ν

ν + x>j Σ̂
−1
(i)xj

xjx
>
j . (13)

Proof. Let us consider the quantity r̃2(i) = x>i Σ̂
−1
GCWExi. In

a RMT regime, it is well-known that r̃2(i)
a.s.−−−−−→

n,p→∞
p/n→c

1

1− c
(see

e.g., [13]).

Combining this result and the one of Proposition 1, a good
candidate for estimating E[r2i ]/p is

θ̂ = (1− p/n)
n∑
i=1

r̂2(i)

where r̂2(i) is built with the t-MLE, computed from the samples
{xj}j 6=i (without the ith observation). Thus, one obtains:

ν̂POP =
2 (1− p/n)

∑n
i=1 r̂

2
(i)

(1− p/n)
∑n
i=1 r̂

2
(i) − 1

Thus, if ν is misspecified but close to the true d.o.f.
parameter, then Proposition 2 and relation (11), allows us to
obtain an improved estimate of ν as follows:

ν̂ =
2 θ̂

θ̂ − 1
.

This property will be then used similarly as in our eatlier
work [7] to iteratively estimate ν. Details of this estimator
computation are contained in Algorithm 1. Then, once ν̂POP
is computed, we use it to estimate the scatter matrix Σ by
solving (2) with obtained estimate ν = ν̂POP .

Algorithm 1: Automatic data-adaptive computation of
the d.o.f. parameter ν
Input : data x1, . . . ,xn in Rp
Initialize: Compute ν0 = 2/max(0, κ̂) + 4, where κ̂

is an estimate of κ explained in [8].
for t = 0, 1, . . . Tmax do

Set Σ̂(i),t as the MLE of Σ based on current
estimate of d.o.f. parameter ν = νt computed when
removing the ith observation:

Σ̂(i),t =
1

n

∑
j 6=i

p+ νt

νt + x>j Σ̂
−1
(i),txj

xjx
>
j .

Update θ̂t = (1− p/n)
1

n

n∑
i=1

x>i Σ̂
−1
(i),txi

p
.

Upate the d.o.f. parameter νt+1 =
2θt
θt − 1

.

if |νt+1 − νt|/νt < 0.01 then
break

Output : ν̂POP = ν
(k)
t+1

V. EXPERIMENTS

Figures 1 and 2 illustrate the interest of the proposed
methods for estimating ν, outperforming the others approaches
in all settings. The proposed estimator ν̂POP is compared to
the Kurtosis-based estimator ν̂K [8] and to the recent ν̂(0)

of [7]. The simulations settings are as follows: ν = 3, 10,
p = 10, 30, 40.

More precisely, in the very heavy-tailed scenario, ν = 3,
on can see in Fig. 1 that the standard method based on
the Kurtosis is not appropriate. Moreover, the proposed
method strongly outperforms the one proposed in [7] that
was designed for heavy-tailed distributions. Note that the
improvement is even bigger for small p, small n. This is
expected since the proposed estimator has been designed
under the RMT regime. Moreover, even when n increases,
one can notice in the zoom (n = 150 to 300) that ν̂POP
performance are still better than ν̂(0) ones. Another remark is
that increasing the dimension p (from 10 to 30) improves the
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Fig. 1: Mean Square Errors of ν̂ versus the number n of obser-
vations by running the different algorithms until convergence
(MAX 5 iterations), using initial value ν0. The samples are
generated from a p-variate real t3(0,Σ)-distribution, where
Σ has an AR(1) covariance matrix structure with % = 0.6 and
p = 10 (dashed curves) and 30 (plain curves); 5000 Monte
Carlo runs.

estimation accuracy for all methods, which is expected since
the methods rely on quadratic forms.

When the d.o.f. is bigger (ν=10), meaning the data
distribution is closer to the Gaussian one, one can see in
Fig. 2 that the Kurtosis-based estimator improves while the
performance of ν̂(0) decreases. Again, the proposed approach
strongly outperforms other methods, obtaining very good
performance for any number n of data. Finally, one observes
the same behavior when p increases from 10 to 40.

A general conclusion is that ν̂POP leads to the best estima-
tion performance, with a significant improvement when both
n and p are small (let’s say of same order).

VI. CONCLUDING REMARKS

In this paper, we have developed an improved estimator of
the d.o.f. parameter for multivariate t-distributed observations,
together with the associated recursive algorithm. This
estimator is based on relationship between the d.o.f.
parameter and the expectation of a Mahalanobis distance.
The MVT distribution fits various heavy-tailed distributions
thanks to this d.o.f. We have shown on simulations that the
proposed estimator outperforms state-of-the-art estimators
in all scenarios from very heavy-tailed distributions to the
ones close to the Gaussian distribution. Future works will
focus on statistical analysis of this estimator as well as
experimentations on real data in finance.
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Fig. 2: Mean Square Errors of ν̂ versus the number n of obser-
vations by running the different algorithms until convergence
(MAX 5 iterations), using initial value ν0. The samples are
generated from a p-variate real t10(0,Σ)-distribution, where
Σ has an AR(1) covariance matrix structure with % = 0.6;
p = 10 (dashed curves) and 40 (plain curves); 5000 Monte
Carlo runs.

APPENDIX A
APPENDIX: PROOF OF PROPOSITION 1

Proof. For brevity, we use shorthands S(i) = Σ̂GCWE,(i) and
S = Σ̂GCWE. For simplicity, let us first define di = z>i S−1zi
and d(i) = z>i S−1(i) zi. To prove the result of Proposition 1,
one cannot simply rely on the law of large numbers since the
d(i)’s are by definition not independent.

Let us consider an =

∥∥∥∥∥ 1

n p

n∑
i=1

d(i) − 1

∥∥∥∥∥ which can be

rewritten as

∥∥∥∥∥ 1

n p

n∑
i=1

(
d(i) − di

)
+

1

n

n∑
i=1

di/p− 1

∥∥∥∥∥
≤

1

n p

n∑
i=1

‖d(i) − di‖︸ ︷︷ ︸
=‖bi‖

+

∥∥∥∥∥ 1n
n∑
i=1

di/p− 1

∥∥∥∥∥︸ ︷︷ ︸
=‖ci‖

(14)

First, the following lemma leads to ci = 0.

Lemma 1.
1

n

n∑
i=1

di = p.

Proof.

1

n

n∑
i=1

di =
1

n

n∑
i=1

zTi S−1zi =
1

n

n∑
i=1

tr
(
S−1ziz

T
i

)
= tr

(
S−1

1

n

n∑
i=1

ziz
T
i

)
= tr(I) = p.
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Let us now focus on the first term bi. Let us remind that
from the Woodbury equality, on has:

di =
d(i)

1 + 1
n d(i)

⇔ d(i) =
1

1− 1
n di

. (15)

leading to

bi =

1
n d

2
(i)

1 + 1
n d(i)

≤
1

n
d2(i),

where the denominator is always greater than 1 since d(i) is
positive as a quadratic form.

Now, one has to study the positive quantity
1

n

n∑
i=1

d2(i)

n
,

since p is assumed to be fixed. Thus, let us consider

P

(
1

n

n∑
i=1

d2(i)

n
> δ

)
, for any δ > 0. One has,

P

(
1

n

n∑
i=1

d2(i)

n
> δ

)
= P

(
n∑
i=1

d2(i)

n
> n δ

)

≤ P

(
n⋃
i=1

{
d2(i)

n
> δ

})

≤ nP

(
d2(i)

n
> δ

)
≤ nP

(
d(i) >

√
n δ
)
.

The first inequality arises from the fact that at least one event{
d2(i)

n
> δ

}
must occur for ensuring

n∑
i=1

d2(i)

n
> n δ. Now,

remind that

d(i) ∼
n p

(n− p)
F (p, n− p).

This implies that E
[
d3(i)

]
=

(
n p

n− p

)3

βn,p, where βn,p can

be computed from the skewness of a Fisher distribution as
follows

βn,p = s3 σ
3 + 3µσ2 + µ3,

where µ is the mean, σ2 the variance and s3 the skewness of a
Fisher distribution with p and n− p degrees of freedom. One
has

µ =
n− p

n− p− 2
,

σ2 =
2(n− p)2(n− 2)

p(n− p− 2)2(n− p− 4)
,

s3 =
(n+ p− 2)

√
8(n− p− 4)

(n− p− 6)
√
p(n− 2)

.

After simplification, one obtains

E
[
d3(i)

]
=

(
n p

n− p− 2

)3(
8(n− 2)(n− p− 2)

p2(n− p− 6)(n− p− 4)

+
3(n− 2)

p(n− p− 4)
+ 1

)
.

Now using Chebyshev’s inequality, one has

P
(
d(i) >

√
n δ
)
≤

E
[
d3(i)

]
n3/2 δ3

,

leading to

P

(
1

n

n∑
i=1

d2(i)

n
> δ

)
≤

E
[
d3(i)

]
n1/2 δ3

, ∀δ > 0.

Since the right-hand term tends to 0 when n tends to infinity,
this concludes the proof.
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