
Extension of Time-Difference-of-Arrival Self
Calibration Solutions Using Robust Multilateration
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Abstract—Recent advances in robust self-calibration have
made it possible to estimate microphone positions and at least
partial sound source positions using ambient sound. However,
there are limits on how well sound source paths can be recovered
using state-of-the-art techniques. In this paper we develop and
evaluate several techniques to extend partial and incomplete so-
lutions. We present minimal solvers for sound source positioning
using non-overlapping pairs of microphone positions and their
respective time-difference measurements, and show how these
new solvers can be used in a hypothesis and test setting. We also
investigate techniques that exploit temporal smoothness of the
sound source paths. The different techniques are evaluated on
both real and synthetic data, and compared to several state-of-
the-art techniques for time-difference-of-arrival multilateration.

Index Terms—TDOA, multilateration, minimal problems,
RANSAC, self-calibration

I. INTRODUCTION

Precise localization of sender/receiver node positions using
radio or sound signals is a key enabler in numerous applica-
tions such as microphone array calibration, speaker diarization,
beamforming, radio antenna array calibration, mapping and
positioning [1]. In this paper we study the problem of self-
calibration of sender/receiver positions using time-difference-
of-arrival (TDOA) measurements from a set of fixed and
synchronised microphones. The problem is simpler if the
sound source has distinct sound events, which are easy to
detect [2], or if the sound profile is known [3]. Recent advances
in robust parameter estimation has made it possible to solve
such problems even for the relatively difficult scenario of
unknown ambient sound [4]–[8]. In many cases it is possible
to achieve at least partial estimates of sound source positions
and microphone positions. However, these methods typically
do not provide good estimates of sound source positions for
all time instants, at least not for difficult situations.

In this paper we develop improved robust multilatera-
tion methods and show how such methods can improve
on sender/receiver node position calibration systems. While
focusing on the problem of multilateration, we envision that
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Fig. 1. A setup consisting of 12 omni-directional microphones used to collect
TDOA measurements from a moving sound source. In the figure is shown 3D
reconstructions (light blue) and ground truth (orange) of sound source path.

the proposed method works as a part of a larger self-calibration
system, in order to increase robustness. For this reason, our
experiments are focused on this scenario.

The contributions of this paper are (i) new datasets for
robust TDOA multilateration1, (ii) a new fast solver for the
minimal problem of TDOA multilateration, (iii) new methods
for robust TDOA multilateration and (iv) evaluation of state-
of-the-art methods for robust TDOA multilateration.

II. STRUCTURE FROM SOUND PIPELINE

For the solution of the structure from sound problem, we use
the following structure, inspired by [5]. The input to the system
is a number m of synchronised sound recordings (Fig. 2a). For
each pair (i, j) of recordings we use a detector to generate
a set of putative time-difference-of-arrival measurements z
for a number of time instants tk, k = 1, . . . , n (Fig. 2b).
After a heuristic step for removing outliers (Fig. 2c), the
data is used as input to a system for robust structure from
sound (Fig. 2d). When successful, the system outputs all or
a subset of the microphone positions, but often only a subset
of the sound source positions. In this paper we study methods
for extending an initial solution to additional sound source
positions (Fig. 2e). The idea is that the set of putative matches
(Fig. 2b), contains valuable information that could be better
exploited using the sound source positions in (Fig. 2d).

1We provide both dataset https://vision.maths.lth.se/sfsdb/ and code https:
//github.com/kalleastrom/StructureFromSound.
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Fig. 2. System overview: The input consists of a number of sound recordings
(a). Using GCC-PHAT, a number of putative TDOA estimates for each time
instant and for each pair of microphones are produced (b). Heuristics are
used to prune these matches (c), which then are used to estimate microphone
and source positions (d). In this paper we study methods for improved sound
source localization using microphone positions from (d) and putative matches
from (b). The aim is to achieve robust sound source localization (e).

III. MULTILATERATION METHODS
Using sound to measure distances has been exploited for a

long time, see for example [9]. Multilateration of sound source
positions from a set of known microphones has been utilized,
at least since World War I, to locate the source of artillery fire
using sound waves [10].

For the multilateration problem, we assume that the mi-
crophone positions (r1, . . . , rm) are known. As an example,
these microphone posiitons could have been estimated using
a self-calibration system, e.g., [8]. At each time instant tk we
estimate time-differences τij of the arrival of sound to the
two microphones ri and rj . When multiplied with the speed
of sound c, each such time-difference τij gives a distance-
difference estimate

zij = τijc ≈ ‖ri − s‖ − ‖rj − s‖+ ε, (1)

where s is the unknown sound source position and ‖·‖ denotes
the `2-norm. The noise ε is either an inlier, assumed to be
normally distributed with a relatively small standard deviation,
or an outlier, assumed to be drawn from a uniform distribution
with a significantly larger standard deviation. Henceforth,
we will use the term TDOA (time-difference-of-arrival) for
the measurements zij , even though they actually represent
distances and not time. Early algorithms were constructed for
solving for s in (1), often assuming a planar geometry, and
further assuming that the TDOA measurements are outlier free
and without missing data. Such algorithms were often iterative
and assumed that an initial guess of s was given.

In this paper we assume that we have a pool of hypotheses
for the measurements zij . Each measurement is a collection of
tuples M =

(
i j zij

)
. The pool P consists of all of these

putative measurements P = {M1, . . . ,MN}, where several
measurements could be to the same (i, j) combination.

In the experiments the measurements P were obtained by
taking the top K = 4 peaks in the GCC-PHAT score [11], for
each microphone pair (i, j). In [12], a system was proposed
that uses a few top peaks in the GCC-PHAT score and tracks
through time using continuity constraint using the Viterbi algo-
rithm. Another method was proposed in [5], where RANSAC
together with continuity constraints was used to track peaks
over time. Collecting distance-difference measurements in an
m×m matrix

Z =

 z11 · · · z1m
...

. . .
...

zm1 · · · zmm

 (2)

we obtain a TDOA matrix. In the suggested computational
pipeline, we can view the step in Fig. 2b as having a TDOA
matrix at each time instant. Again, note that for each element
of these matrices there are several putative entries.

The true TDOA matrix is at most rank 2, [13], and can be
written as

Z = v1T − 1vT , (3)

where
v =

(
v1 · · · vm

)T
(4)

is a vector of distance-differences, which will be called a
TDOA vector. Adding a constant to v will not change the
matrix Z. Notice that each column of the TDOA matrix
could be used as a TDOA vector, if they are outlier-free and
without missing data. In the TDOA vector formulation, the
measurement equation is

vi = ‖ri − s‖+ o, (5)

where the unknown o can be interpreted as the unknown offset
of the TDOA vector as discussed above. Alternatively, it can
be interpreted as the unknown starting point of the sound. If
the vector is obtained by measuring time-differences to a fixed
microphone, e.g. r1, then we have vi = zi1 = ‖ri − s‖ + o
with o = −‖r1 − s‖.

A common trick is to use four or more equations of type
(5) to derive three or more equations of the form

(vi − o)2 − (v1 − o)2 = rTi ri − rT1 r1 − (ri − r1)
Ts, (6)

where two equations of type (5) are used for microphone i
and 1. Note that the square terms sTs and o2 disappear, and
the constraints become linear in s and o.

In terms of the computational pipeline, we can view the
step in Fig. 2c as having a TDOA vector at each time instant,
although, possibly with missing data and outliers.

Several closed-form solutions exist for multilateration using
the TDOA vector formulation and the elimination in (6), e.g.,
[14]–[18]. Thus, all of these methods assume that all time-
differences are given to the same microphone. The minimal
problem for the 3D case is to use four microphones and it has
in general two solutions (counted with complex solutions and
multiplicity of solutions). This can be seen as using three linear
constraints of type (6) to reduce the four unknowns in s and
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o. This parameterizes the solution affinely with one parameter.
Inserting this into the first equation

v1 = ‖r1 − s‖+ o,

gives a quadratic constraint, which has at most two solutions.
An initial solution can be refined iteratively by minimizing

fv(s, o) =

m∑
i=1

L(vi − (‖ri − s‖+ o)), (7)

for the TDOA vector formulation or

fZ(s) =

m∑
i=1

m∑
j=1

L(zij − (‖ri − s‖ − ‖rj − s‖)), (8)

for the TDOA matrix formulation. Here L is a loss function,
e.g., the `2-loss L(x) = x2. Other common choices are the
`1-loss L(x) = |x| or a robust version such as the Huber loss
or truncated versions of `1or `2. We will also assume that L
removes datapoints that are missing or known to be outliers
(e.g. from our proposed bootstrapping in Section V-A).

Building on previous results [19], [20], Velasco et al. used
the redundancy of measurements in the TDOA matrix to
perform denoising, detect outliers and fill in missing data [13].
The output from their approach is a TDOA vector, which can
be used for trilateration using, e.g., [18]. Unlike the proposed
method, [13] does not exploit the known microphone positions
when denoising and allows for at most one TDOA measure-
ment for each microphone pair. Additionally, the number of
expected outliers is a nuisance parameter that must be specified
prior to denoising.

IV. MINIMAL SOLVERS

The closed-form solution for determining s using TDOA
measurements, as presented in previous papers, e.g., [14]–[18],
all assume (for the 3D case) that four elements of the TDOA
vector are given, or that four elements of the TDOA matrix
from the same row (or column) are given. The trick that is
used in (6) does not work for the minimal case of any three
measurements of the TDOA matrix. Here we introduce a fast
and numerically stable solver for this minimal case. We derive
this for the general N -dimensional case although in practice
we most often use it for 2D and 3D problems.

Let N be the dimension of the space, i.e., s ∈ RN . Suitably
rearranging and squaring (1) twice results in the quadratic
constraint

sTAs+ bTs+ c = 0, (9)

where

A = 4(ri − rj)(ri − rj)
T − 4z2ijI, (10)

b = 4z2ij(ri + rj)− 4(rTi ri − rTj rj)(ri − rj), (11)

c = (rTi ri − rTj rj)
2 − 2(rTi ri + rTj rj)z

2
ij + z4ij . (12)

Constructing N quadratic combinations for different
(ri, rj , zij) results in a polynomial system in s. Using meth-
ods from algebraic geometry [21, p. 235] we conclude that
there are at most four solutions for N = 2 and eight when

N = 3. Some of the solutions may be complex and some
may not satisfy (1) since we have lost the sign of zij due to
the squaring. These solutions are however easily discarded. To
produce a solver for the system we use an automatic solver
generator [22]. Although there are dependencies between the
polynomial coefficients, the problem does not admit smaller
elimination template sizes (see [22]) than the case of indepen-
dent coefficients (6× 10 and 26× 34 for N = 2 and N = 3,
respectively).

An efficient method for solving three quadratics in three
variables, corresponding to N = 3, was presented in [23].
There, the problem was reduced to a single univariate poly-
nomial of degree eight whose real solutions were found using
Sturm sequences [24]. We implemented their solver but found
no clear improvement in execution time or numerical stability
over our generated solver.

V. ROBUST MULTILATERATION ALGORITHMS

A. Proposed RANSAC scheme using minimal pairwise solver

We propose to use random sampling consensus (RANSAC)
[25]. In the hypothesis and test loop we randomly choose three
measurements from the pool of putative matches P . From
these three TDOA measurements we use the fast minimal
solver to obtain hypotheses for the sound source position s
and choose the one whose inlier set is maximal. Inliers are
measurements for which∣∣z − ‖ri − s‖ − ‖rj − s‖

∣∣ < T, (13)

where T is a threshold chosen to distinguish between inliers
and outliers. This initial estimate is then improved by opti-
mizing truncated `2-loss according to (8).

B. Using smoothness over time

In the experiments we also consider using smoothness
priors on the sound source path. The solution (including the
microphone positions) is refined by local minimization of

freg(s, r) =

m∑
i=1

m∑
j=1

n∑
k=1

L
(
zijk−(‖ri−sk‖−‖rj−sk‖)

)
+

+ λ

n−1∑
k=2

‖sk−1 − 2sk + sk+1‖2. (14)

This requires a good initial estimate of the sound source path.

VI. EXPERIMENTAL VALIDATION

A. Real data

We collected one dataset consisting of seven recordings
with different songs and different sound source motion. The
setup consisted of 12 omni-directional microphones (the T-
bone MM-1) spanning a volume of 4.0 × 4.6 × 1.5 meters
(see Fig. 1). Ground truth positions for the microphones and
speaker positions were found using a Qualisys motion capture
system. The microphones were all internally synchronized, but
we assume that the time of sound emission from the speaker is
unknown. For each recording a song was played as the speaker
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was moved around in the room and approximately one minute
was recorded using a soundcard with sampling rate 96, 000
Hz. The temperature in the room was measured to be 20.1 ◦C
which indicates a speed of sound of c = 343m/s.

For each pair of microphones, the GCC-PHAT score [11]
was calculated. We used a window of 2, 048 samples centered
at every 1, 000:th sample points. The search width for the
GCC-PHAT score was cropped to ±800 sample points. Thus
we are able to find time-difference-of-arrival measurements
corresponding to ±2.85m distance-difference to microphone
pairs. For each time instant and each pair of microphones we
selected at the four strongest local maxima in the GCC-PHAT
score, resulting in a pool of putative measurements. In Fig. 2.b
these are shown for microphone pair 6 och 8.

Thus, for each recording and for each time window we
had time-difference-of-arrival measurements and ground truth
microphone and sound source positions. In total there were
46,066 such examples to validate the algorithms on.

B. Simulated/real data

The real dataset is quite challenging. It contains outliers,
missing data and multiple hypotheses. In order to understand
the behaviour of the algorithms we also constructed simulated
data. This was done using the ground truth positions of the
microphones and the sound source for the seven datasets
above. In this way we could make datasets that were similar
in geometry, but for which there was less noise, less outliers
and/or less missing data. Together with the real recordings,
this resulted in the following four datasets:

(a) Simulated TDOA measurements. One hypothesis. Gaus-
sian noise with σ = 2 sample points. No missing data.
No outliers. Ground truth microphone positions.

(b) Simulated TDOA measurements. One hypothesis. Gaus-
sian noise with σ = 2 sample points. Missing data: 20%.
Outliers: 20%. Ground truth microphone positions.

(c) Real TDOA measurements. Four hypotheses. Inlier noise
estimated to have σ ≈ 5 sample points. Outliers: ≈ 86%.
Ground truth microphone positions.

(d) Real TDOA measurements. Four hypotheses. Inlier noise
estimated to have σ ≈ 5 sample points. Outliers: ≈ 86%.
Estimated microphone positions from a state-of-the-art
self-calibration system, [8].

C. Evaluation of the multilateration methods

We first evaluate methods that only use one individual
time instant. We tested two state-of-the-art routines. For both
methods we initially, from the pool of putative matches P ,
generate the TDOA matrix Z by selecting the measurement
for each microphone pair for which the GCC-PHAT score is
the strongest. For (i) Chan and Ho [18], we then use one
of the microphones (no 6 in our experiment) to calculate the
TDOA vector v from Z. The 6th microphone was considered
to be best for this purpose since it was in the centre of
the room. Finally we estimate the sound source position s
using microphone positions and the TDOA vector according
to [18]. For the second method (ii) Velasco et al., we use

[13] to robustly estimate the TDOA vector v from Z. Finally,
we estimate the sound source position s using microphone
positions and the TDOA vector according to [18] as suggested
in [13]. We also compared our method to four search based
methods. These were (iii) `2-optimization from a random
starting point, (iv) `1-optimization from a random starting
point, (v) truncated `1-optimization from a random starting
point and (vi) truncated `1-optimization from ten random
starting points, choosing the solution with the lowest truncated
`1-loss, as well as the proposed algorithm based on (vii)
RANSAC loop to select starting point followed by truncated
`2-optimization.

For each scenario above we calculated the percentage of
times the estimated sound source came within 15 cm of
the ground truth position. The results are shown in Fig. 3.
Notice that most methods work well for the outlier free dataset
(a), except the truncated `1-loss optimization with one single
random starting point. This shows that finding a good starting
point is critical for robust loss optimization. With more outliers
(dataset (b)), we see that Chan and Ho and several other
methods struggle to find a good solution. For the real data
problem with ground truth microphone positions (dataset (c))
the proposed method clearly outperforms the other methods.
The final (dataset (d)), is even more challenging, but the
overall trend is the same.

D. Applying motion priors

We used the result from the different multilateration meth-
ods to optimize over the whole sound recording using the
motion prior as described in Section V-B. This optimization
needs a fairly good initial estimate in order to converge to the
global optimum. The result is also shown in Fig. 3. In Table I
we show the results for dataset (d), with a breakdown to the
individual seven recordings in the dataset. As can be seen in
the table, there are four songs for which no methods work
well. This is clearly a result of having a poor estimate of the
microphone positions, since the result from dataset (c) works
significantly better, indicating a need for further research. Fi-
nally we visualize how the suggested improvements affect the
reconstructed 3D path. In Fig. 4 we show the improvement to
the 3D reconstruction with the proposed system for recording
nr 6. It is clear that the proposed improvements (Fig. 4-right)
reduce the noise and improves the estimation of the sound
source path as compared to the current state-of-the-art self-
calibration system (Fig. 4-left).

VII. CONCLUSIONS

In this paper we have made several improvements on robust
multilateration using TDOA matrices with multiple hypothe-
ses for each entry. We have developed a fast and efficient
solver for the minimal problem of disjoint pairwise TDOA
measurements. We have combined this solver with RANSAC
algorithms and robust nonlinear estimation and obtained better
results than state-of-the-art algorithms for robust multilatera-
tion. The resulting system has been tested on both synthetic
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Fig. 3. Performance aggregated over all datasets, as a function of varying difficulty in experimental setup, without (left) and with (right) temporal smoothing.
The performance is measured by computing how often the source position was estimated within 15 cm from the ground truth position.

TABLE I
THE RESULTS FOR THE SEVEN DIFFERENT RECORDINGS FROM DATASET

(d) MEASURED AS THE PERCENTAGE OF TIMES THE SOUND SOURCE
POSITION WAS ESTIMATED WITHIN 15 CM OF THE GROUND TRUTH

POSITION.

Recording 1 2 3 4 5 6 7
Chan and Ho 0 0 0 1 0 4 4
Velasco et al. 0 0 0 3 0 23 28
`2, single 0 0 0 0 0 0 0
`1, single 0 0 0 0 0 4 6
trunc. `1, single 0 0 0 0 0 3 4
trunc. `1, multiple 0 0 0 1 0 20 25
Proposed 0 0 0 10 0 70 78

Fig. 4. 3D reconstruction (blue) and ground truth (orange) of sound source
path from calibration system (left) and from the proposed method (right).

and real data, producing high quality solutions even in the
presence of missing data and high amount of outliers.
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