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Abstract—Sounds recorded with smartphones or IoT devices
often have completely missing parts due to microphone failure
and packet loss in data transmission over the network, and
partially unreliable observations caused by clipping, wind noise.
In this paper, we investigate the impact of the partially missing
channels on the performance of acoustic scene classification
using multichannel audio recordings, especially for a distributed
microphone array. Missing observations cause not only losses
of time-frequency and spatial information on sound sources
but also a mismatch between a trained model and evaluation
data. We thus investigate how a missing channel caused by the
microphone failure and packet loss affects the performance of
acoustic scene classification in detail. We also propose simple data
augmentation methods for scene classification using multichannel
observations with partially missing channels and evaluate the
scene classification performance using the data augmentation
methods.

Index Terms—Acoustic scene classification, multichannel pro-
cessing, missing observation, data augmentation

I. INTRODUCTION

Acoustic scene classification (ASC), which classifies sound
recordings into the predefined class such as recording en-
vironments, places, and daily activities, is one of the core
search problems in environmental sound analysis [1]–[3].
ASC has significant potential for various applications such as
monitoring infants/elderly people [4], automatic surveillance
[5], automatic life-logging [6], and media retrieval [7].

Many methods for ASC utilizing spectral information have
been proposed. For instance, Eronen et al. [8] and Mesaros
et al. [9] have proposed methods based on mel-frequency
cepstral coefficients (MFCCs) and Gaussian mixture models
(GMMs). Valenti et al. [10], Han et al. [11], and Jallet et
al. [12] have proposed methods using mel-spectrograms and
a convolutional neural network (CNN). Liping et al. [13],
Tanabe et al. [14], and Raveh and Amar [15] have proposed
Xeption-based, VGG-based, and ResNet-based ASC methods,
respectively .

More recently, environmental sound analysis utilizing spa-
tial information, which is extracted from time differences or
sound power ratios between channels, has also been studied
[14], [16]–[20]. Conventional microphone array processing
requires that microphones are synchronized between channels
and/or microphone locations or array geometry is known.
However, spatial information based on accurate time differ-
ences or sound power ratios between channels cannot be
extracted using a combination of unsynchronized distributed

microphones such as smartphones, IoT devices, and surveil-
lance cameras. To utilize unsynchronized distributed micro-
phones whose locations or array geometry is unknown for
multichannel ASC, Kürby et al. [21] have proposed a method
based on the late fusion of scene classification results obtained
with each microphone. Many conventional methods for mul-
tichannel ASC also apply this strategy [22], [23]. Imoto et al.
have proposed ASC methods using the spatial cepstrum and
graph cepstrum that can be applied under an unsynchronized
condition [18], [20].

On the other hand, sounds recorded with smartphones or
IoT devices often have missing parts caused by microphone
failure, packet loss in data transmission over the network, or
unreliable observations caused by clipping and wind noise.
To analyze acoustic scenes from intermittently missing ob-
servations with a single-channel microphone, Imoto and Ono
have proposed a method of simultaneously analyzing acoustic
scenes and estimating missing observations [24]. However, the
conventional method is not for multichannel audio recordings,
and the impact of partially missing channels on the ASC
performance using multichannel audio recordings has not been
investigated in the conventional works. In this paper, we thus
investigate the impact of partially missing channels on the
performance of multichannel ASC under the condition that
several microphones do not completely work.

In machine-learning-based multichannel ASC, missing
channels cause not only losses of time-frequency and spatial
information on sound sources but also a mismatch between
a trained model and evaluation data. Therefore, to realize
a robust ASC system, it is important to investigate how a
missing channel affects the ASC performance. We then apply
simple data augmentation methods for multichannel ASC with
partially missing channels and evaluate the scene classification
performance using the data augmentation methods.

The remainder of this paper is organized as follows. In
section 2, we discuss conventional acoustic scene classification
using multichannel observation. In section 3, we introduce
three simple data augmentation methods for multichannel ASC
with missing channels. In section 4, we report the results of
experiments carried out to evaluate the performance of ASC
with partially missing channels and the impact of missing
channels on the ASC performance. Finally, we conclude this
paper in section 5.
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II. CONVENTIONAL METHODS FOR SCENE
CLASSIFICATION

Let us consider a model f and model parameter θ. The
purpose of ASC is to estimate an acoustic scene label ẑ in an
evaluated sound as

ẑ = arg max
z

f(X,θ), (1)

where z and X(∈RF×T×C) are the acoustic scene class and
acoustic feature, respectively. F , T , and C are the numbers
of frequency bins, time frames, and channels, respectively.
The model parameter θ is preliminarily determined using the
training dataset D = {(X1, z1), ..., (Xl, zl), ..., (XL, zL)}.
Here, Xl is the acoustic feature of the lth sound clip and
zl indicates an acoustic scene label in the lth sound clip.
For the acoustic feature Xl, the mel-band energy and MFCCs
are often used. As the model f , GMMs, a CNN, a ResNet-
based, or a VGG-based method has often been applied. In
the neural-network-based methods, the model parameter θ is
estimated using the softmax cross-entropy loss function and
the backpropagation technique.

Most conventional methods assume that there is no missing
channel in a multichannel observation. However, in the sce-
nario of a distributed microphone array, we may have partially
missing channels caused by microphone failure, in which some
acoustic feature Xc in the cth channel cannot be utilized in
the evaluation data.

III. DATA AUGMENTATION FOR MULTICHANNEL SCENE
CLASSIFICATION

In this work, we apply three data augmentation methods
for multichannel scene classification with partially missing
channels. These data augmentation methods are reasonably
simple to implement and enable us to investigate how partially
missing channels affect the ASC performance.

A. Channel Mask

The data missing in the evaluation stage causes a mismatch
between the trained model and evaluation data. To avoid this
mismatch, we apply simple binary masking throughout the
input time-frequency features for the random channels in the
model training stage as follows:

Xl,c = O, (2)

where Xl,c is the acoustic feature of the lth sound clip in the
cth channel. O is the zero matrix when the acoustic feature is
the linear spectrum, whereas it is the matrix that has negative
infinity values in its element when the acoustic feature is the
log spectrum.

TABLE I
NUMBER OF RECORDED AUDIO SEGMENTS

Acoustic scene # segments
Absence 4,874
Cooking 1,281

Dishwashing 356
Eating 577
Other 515

Social activity 1,236
Vacuum cleaning 243

Watching TV 4,662
Working 4,661

Total 18,405

TABLE II
DETAILED NETWORK ARCHITECTURE USED FOR

EVALUATION EXPERIMENTS

Layer Input size Output size
Conv. (7×1×64) + BN + ReLU 40×501×16 40×501×64

Max pooling (4×1) + Dropout (rate=0.2) 40×501×64 10×501×64
Conv. (10×1×128) + BN + ReLU 10×501×64 10×501×128
Conv. (1×7×256) + BN + ReLU 10×501×128 10×501×256

Global max pooling + Dropout (rate=0.5) 10×501×256 256
Dense 256 128

Softmax 128 9

TABLE III
SCENE CLASSIFICATION PERFORMANCE WITH MISSING CHANNELS IN

EVALUATION DATASET

w/o missing 1ch 2ch 4ch 8ch 12ch
Micro-Fscore 92.26% 83.37% 72.82% 57.54% 43.30% 28.62%
Macro-Fscore 88.59% 64.27% 42.81% 34.79% 29.92% 26.10%

TABLE IV
SCENE CLASSIFICATION PERFORMANCE WITH SAME MISSING CHANNELS

IN TRAINING AND EVALUATION DATASETS

1ch 2ch 4ch 8ch 12ch
Micro-Fscore 91.47% 90.98% 91.20% 89.26% 84.76%
Macro-Fscore 86.86% 84.49% 84.60% 81.25% 77.02%

B. Channel Overwrite and Random Copy

When applying channel mask, a large difference in acoustic
features may remain between the unmasked channel in the
training data and the missing channel in the evaluation data.
This may not fully mitigate the mismatch between the trained
model and evaluation data. To bridge this gap, we apply a data
augmentation method using channel overwrite in the model
training stage and a random copy in the evaluation stage.
Channel overwrite mandatorily overwrites the time-frequency
features between channels in model training as follows:

Xl,c = Xl,c′ , (3)

where c and c′ are different channel indices. In the evaluation
stage, we randomly copy the acoustic features from non-
missing channels to missing channels.
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TABLE V
MICRO-FSCORE FOR CLASSIFICATION PERFORMANCE WITH DATA AUGMENTATION.

“nCH MISSING” DENOTES THE NUMBER OF MISSING CHANNELS IN THE EVALUATION DATASET.

w/o missing 1ch missing 2ch missing 4ch missing 8ch missing 12ch missing
w/o augmentation 92.26% 83.37% 72.82% 57.54% 43.30% 28.62%
Channel mask 91.65% 91.46% 91.39% 90.94% 87.70% 78.13%
Channel overwrite + Random copy 91.89% 91.70% 91.56% 90.03% 87.82% 84.32%
Channel swap + Random copy 91.93% 91.86% 91.75% 90.29% 88.72% 87.59%

TABLE VI
MACRO FSCORE FOR CLASSIFICATION PERFORMANCE WITH DATA AUGMENTATION

“nCH MISSING” DENOTES THE NUMBER OF MISSING CHANNELS IN THE EVALUATION DATASET.

w/o missing 1ch missing 2ch missing 4ch missing 8ch missing 12ch missing
w/o augmentation 88.59% 64.27% 42.81% 34.79% 29.92% 26.10%
Channel mask 86.40% 86.83% 86.22% 85.18% 79.91% 64.61%
Channel overwrite + Random copy 86.58% 86.86% 86.37% 86.77% 80.21% 79.88%
Channel swap + Random copy 86.72% 86.90% 86.61% 86.13% 82.27% 81.12%

C. Channel Swap and Random Copy

Channel mask and channel overwrite lose time-frequency
information since we discard time-frequency features in the
training stage. To train the scene classification model without
wasting time-frequency information, we apply a data aug-
mentation method using channel swap. Channel swap simply
swaps the time-frequency features between channels in model
training as follows:

{
Xl,c = Xl,c′

Xl,c′ = Xl,c.
(4)

In the evaluation stage, we randomly copy the acoustic features
from non-missing channels to missing channels as with the
data augmentation in channel overwrite.

IV. EXPERIMENTS

A. Experimental Conditions

We evaluate the impact of a missing channel on the perfor-
mance of scene classification using various data augmentation
methods. To evaluate the performance, we use the SINS
dataset [26] and the experimental setting in the DCASE2018
Challenge Task 5 [25]. The SINS is a database for the detection
of daily activities in a home environment from sounds recorded
by a distributed microphone array. From the SINS dataset,
we first select four microphone arrays (array 1, 4, 6, 8 in
the SINS dataset), each of which consists of four linearly
arranged microphones; that is, each audio segment contains
16 channels. Then, we calculate cross-correlation coefficients
between Node1 xx audio.wav in the SINS dataset and De-
vNode1 xx.wav in the development dataset of DCASE2018
Challenge Task 5 to determine the reference time positions of
audio segments. After that, we split the continuous recordings
of the array 1, 4, 6, 8 into 16 channel/10 s audio segments
based on the reference time positions. As shown in Table I,
the dataset contains 18,405 audio segments with nine acoustic

scene classes, and we split them into a similar 4-fold cross-
validation setup as in DCASE2018 Challenge Task 5, in which
we use the metadata of DevNode1 xx.wav.

For the acoustic features, we use the 40-dimensional log
mel-band energy, which has a frame length of 40 ms with hop
size of a 20 ms. In this paper, we select missing channels
randomly and regard the missing channels as silent with
zeros filled in the time domain. As the classification model,
we apply the same network proposed by Inoue et al. [22],
which achieved the best score in DCASE2018 Challenge Task
5, except for the input channel size of the network. The
detailed network structure is shown in Table II. We utilize the
RAdam optimizer [27] with a learning rate of 0.001. For each
method, we conduct the evaluation experiment 16 (random
combinations of missing channels) × 4 (fold) times.

B. Experimental Results

1) Impact of Missing Channel on Classification Perfor-
mance: We evaluate the performance degradation caused by
missing channels in the evaluation data. Table III shows the
scene classification performance in terms of micro- and macro-
Fscore. The result shows that the missing channels cause
severe performance degradation in multichannel ASC.

To investigate how the missing channels affect the ASC
performance, we also evaluate the ASC performance with
the same channels missing in the training and evaluation
datasets. Table IV shows the scene classification performance
in terms of micro- and macro-Fscore. The results show that
the performance degradation is significantly smaller than the
corresponding results in Table III, even though some channels
are missing in the training dataset. This indicates that, in
multichannel ASC, the mismatch between the trained model
and evaluation data is a much more severe problem than
missing spectral and spatial information. Thus, the mismatch
between the trained model and evaluation data must be
addressed preferentially in multichannel ASC with partially
missing channels.
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Fig. 1. Example of scene classification result
without missing channels (recall, %)
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Fig. 2. Example of scene classification result
with four missing channels in evaluation data
(recall, %)
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Fig. 3. Example of scene classification result
based on channel swap with four missing chan-
nels in evaluation data (recall, %)

2) Evaluation of Data Augmentation Technique for Multi-
channel ASC: We next evaluate the ASC performance with
the proposed data augmentation methods. In this experiment,
we randomly select a number of channels from 0 to 8 for data
augmentation in each iteration of model training. Tables V
and VI show the scene classification performance in terms of
micro- and macro-Fscore with the proposed data augmentation
methods. The results show that the three data augmentation
methods achieve reasonable performances. In particular, chan-
nel overwrite and channel swap achieve comparable ASC per-
formance to the result without missing channels. Comparing
these results with Table IV indicates that channel overwrite
and channel swap can almost completely avoid the mismatch
between the trained model and evaluation data. On the other
hand, the scene classification performance when using channel
mask is lower than that of channel overwrite and channel
swap. This is because the correlation between acoustic features
of non-missing channels is higher than that between missing
and non-missing channels; thus, copying the acoustic features
from non-missing channels to missing channels is a better
complement than using the zero-padding data.

3) Datailed Scene Classification Performance: Figs. 1–
3 show the detailed scene classification performance using
no data augmentation method and channel swap with four
channels missing. The results show that most of the audio
segments are predicted as “other.” On the other hand, the
classification result using channel swap achieves comparable
performance to that without missing channels. From these
results, we conclude that, in multichannel ASC, partially
missing channels may cause a severe degradation of the ASC
performance, and avoiding the mismatch between the trained
model and evaluation data is important to achieve a robust
ASC system in a realistic situation.

V. CONCLUSION

In this paper, we investigated the impact of partially missing
channels caused by microphone failure or packet loss on the
ASC performance using multichannel audio recordings. We
also proposed three data augmentation methods for multi-
channel ASC: channel mask, channel overwrite, and channel
swap. The experimental results showed that, in multichannel
ASC, the mismatch between the trained model and evaluation
data is a much more severe problem than missing spectral
and spatial information. To avoid this negative impact on the
ASC performance, the data augmentation based on channel
overwrite and channel swap is effective and can avoid the per-
formance degradation caused by the model mismatch. In more
practical situations, there are also unreliable observations such
as heavily clipped, distorted, and noise-polluted sounds, and
scene classification methods with these unreliable observations
need to be addressed in future works.
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