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Abstract—Cell-free massive multiple-input multiple-output
(MIMO) is a core technology for future wireless communication
systems, since it harnesses benefits from massive MIMO and
distributed MIMO systems. In order to be practically viable, cell-
free massive MIMO systems are expected to make use of many
low cost, low quality components. As a consequence, this makes
cell-free massive MIMO susceptible to hardware imperfections,
such as in-phase and quadrature-phase imbalance (IQI). Moti-
vated by this, we provide a derivation for the achievable spectral
efficiency of each user in a cell-free massive MIMO system
with IQI and multiple-antenna users. Our analysis demonstrates
that the performance loss from IQI is noticeable under high
IQ mismatch. Furthermore, our analytical and numerical results
showcase that the system performance improves without bound
for a perfect IQ matching scenario, however, if IQI is present the
performance saturates even for an increasing number of access
points.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a core
technology for the fifth generation (5G) wireless communi-
cation systems. Specifically, large gains in spectral efficiency
(SE), energy efficiency, and reliability are achieved by massive
MIMO, from the utilization of a huge number of base station
(BS) antennas serving a comparatively small number of users
[1]. Cell-free massive MIMO was recently introduced to
increase the connectivity in massive MIMO [2]. It consists
of a large number of geographically distributed access points
(APs), serving a smaller number of users across an area. The
APs cooperate using a back/front-haul network and serve the
users without cells. The nature of this operational setup allows
cell-free massive MIMO to simultaneously harness benefits
from both massive MIMO and distributed MIMO, such as
lower pathloss, macrodiversity gains and improved coverage
[2]. Therefore, it is of particular research interest for the
development of future wireless communication systems and
has naturally attracted much research attention [3]–[5].

In a practical system, there will always be imperfections due
to the hardware that cause undesired disruptions in the system.
Such hardware imperfections will be frequently present in
low quality components. Cell-free massive MIMO systems are
expected to make use of low cost, low precision components.

The work of J. A. C. Sutton and H. Q. Ngo was supported by the
U.K. Research and Innovation Future Leaders Fellowships under Grant
MR/S017666/1. The work of M. Matthaiou was supported by a research
grant from the Department for the Economy Northern Ireland under the US-
Ireland R&D Partnership Programme and by the EPSRC, U.K., under Grant
EP/P000673/1.

Hence, it is important to model and analyze the effects of
such imperfections on cell-free massive MIMO. The in-phase
and quadrature-phase imbalance (IQI) is one such hardware
imperfection, that refers to the mismatch between the real and
imaginary parts of the complex signal. In the massive MIMO
space, there exists research that accounts for the effects of
IQI, see, for example, [6]–[9]; comparatively, there is little
research on the impact of IQI on cell-free massive MIMO
systems. The work in [10], [11] competes a range of investi-
gations into cell-free massive MIMO systems with hardware
impairments which include the effects of IQI. However, these
works assume single-antenna users and a Gaussian-type model
for the aggregate impact of hardware impairments.

Inspired by the above discussion, in our work, we analyze
the performance of cell-free massive MIMO systems under IQI
at the APs, where both the APs and the users are equipped
with multiple antennas. We consider simple processing at
the APs and users where there are no IQI compensation
techniques used. To complete this analysis, new expressions
for the minimum mean-square error (MMSE) estimation and
the achievable SE are derived. An asymptotic analysis for an
infinite number of APs is also presented. We show that when
the number of APs grows with bound, the IQI effect persists.
This suggests more advanced IQI compensation techniques
should be taken into consideration to fully exploit the benefits
of cell-free massive MIMO.

Notation: Superscripts ()∗, ()H , ()T and ()−1 express the
conjugate, conjugate-transpose, transpose and inverse, while
tr () and |.| represent the trace and determinant of a matrix,
respectively. Finally, ⊗ expresses the Kronecker product.

II. SYSTEM MODEL

Consider a cell-free massive MIMO system comprised of M
APs and K users located in a large area. Each AP deploys L
antennas and each user has N antennas. The system operates
in time-division duplex (TDD) mode. Let Gmk ∈ CL×N be
the channel matrix between the kth user and the mth AP, i.e.,

Gmk =
√
βmkHmk, (1)

where βmk represents the large-scale fading and Hmk is the
small-scale fading matrix, whose elements are assumed to
be independent and identically distributed (i.i.d.) circularly
symmetric complex Gaussian random variables (RVs) with
zero mean and variance one i.e. CN (0, 1). For this work,
uplink payload data transmission is ignored and we focus
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entirely on the downlink transmission; therefore, the coherence
interval consists of only uplink training and downlink payload
data transmission. These phases of the coherence interval are
detailed in the following sections.

A. Uplink Training

During the uplink training phase, all pilot sequences from
their respective users are sent to the APs. Let τ be the length
of training duration per coherence interval T , and Φk be the
pilot matrix from the kth user of size τ ×N . We assume that
all pilot sequences assigned for all user antennas are real and
pairwisely orthogonal as in [7], i.e, ΦH

k Φk = ΦT
kΦk = IN ,

and ΦH
k Φk′ = ΦT

kΦk′ = 0 for k 6= k′. This requires τ ≥
KN . The received pilot signal at the mth AP is

Ym =

K∑
k=1

√
τρpGmkΦ

H
k + Wm, (2)

where ρp is the normalized signal-to-noise ratio of each pilot
symbol and Wm ∈ CL×τ is the matrix of additive noise. The
elements of Wm are assumed to be CN (0, 1) i.i.d. RVs.

We first focus on the IQI at the APs because we want to
study the fundamental limit of cell-free massive MIMO in
terms of IQI. In addition, we use the asymmetrical IQI model.1

The corresponding received pilot signal at the mth AP under
AP IQI can be expressed as

Yimb,m = K1Ym + K2Y
∗
m, (3)

where the received IQI coefficients of the mth AP, K1 and K2,
are L × L diagonal matrices with diagonal elements K1,l =
1
2

(
1 + gle

−jθl
)

and K2,l = 1
2

(
1− glejθl

)
, where gl and θl

denote the amplitude and phase mismatch respectively at the
lth AP antenna.

To estimate the channel Gmk, the AP m first projects
the received pilot sequence Yimb,m onto Φk as Yimb,mk =
Yimb,mΦk. Then, it uses the MMSE estimation technique.
The received pilot sequence at AP m after the projection is

Yimb,mk =
√
τρpK1Gmk +

√
τρpK2G

∗
mk + W̃mk, (4)

where W̃mk = K1Wmk + K2W
∗
mk, with Wmk = WmΦk.

We now stack all columns of Yimb,mk on top of each other
with the vectorization operation vec (·),

vec (Yimb,mk) =
√
τρp

(
ITN ⊗K1

)
vec (Gmk)

+
√
τρp

(
ITN ⊗K2

)
vec (G∗mk) + vec

(
W̃mk

)
. (5)

Denote by Ĝmk the MMSE estimate of Gmk given Yimb,mk.
Then, from [12], we obtain

vec
(
Ĝmk

)
=
(
βmk
√
τρpK̄

H
1

)
×
(
τρpK̄1βmkK̄

H
1 + Cñmk

)−1
vec (Yimb,mk) , (6)

where K̄1 = IN⊗K1, ñmk =
√
τρp

(
ITN ⊗K2

)
vec (G∗mk) +

vec
(
W̃mk

)
, and Cñmk

is the covariance matrix of ñmk.

1IQI can be modeled by a symmetric model as well [8]. This model can be
easily obtained from the asymmetrical model by a linear transformation [6].

Using the derivation in Section VI-A, we obtain the MMSE
estimate of the channel matrix Gmk as follows:

Ĝmk = ΩmkYimb,mk, (7)

where Ωmk is an L × L diagonal matrix whose lth diagonal
element is

ωmkl=
βmk
√
τρpK

∗
1,l

(τρpβmk + 1)
(
|K1,l|2+|K2,l|2

) . (8)

We now have that the (l, n)th element of Ĝmk has zero
mean and variance γmkl, where

γmkl = βmk
√
τρpK1,lωmkl. (9)

B. Downlink Payload Data Transmission
Once the BS has acquired the channel information, the

channel estimates can be utilized by each AP to precode the
intended symbols, before transmitting to each user. If IQI is
not considered, the L× 1 transmitted signal from AP m is

xm =
√
ρd

K∑
k=1

Wmksk, (10)

where sk is an N × 1 vector of symbols intended for the kth
user which satisfies E

{
sks

H
k

}
= IN , ρd is the normalized

transmit power of each data symbol, and Wmk is an L×N
precoding matrix. E {·} stands for the expectation. The power
constraint at each AP can be expressed as

E
{
‖xm‖2

}
= ρd. (11)

However, in this paper we consider the more practical
model with IQI, hence, the IQI impaired transmitted signal
is modeled as

ximb,m =
√
ρd

K∑
k=1

A1Wmksk +
√
ρd

K∑
k=1

A2W
∗
mks

∗
k, (12)

where A1 and A2 represent the transmit IQI. They both
are diagonal matrices whose diagonal elements are A1,l =
1
2

(
1 + fle

−jαl
)

and A2,l = 1
2

(
1− flejαl

)
, where fl and αl

denote the amplitude and phase mismatch respectively. The
signal received at the kth user is

rk =

M∑
m=1

GH
mkximb,m + nk, (13)

where nk is the noise vector at user k, assumed to have
elements that are i.i.d. CN (0, 1) RVs.

In this paper, we will focus the investigation on maximum-
ratio (MR) processing. MR processing scheme has been widely
used in cell-free massive MIMO research because it is com-
putationally simple and can be implemented in a distributed
manner [2]. With MR processing, the precoding matrix Wmk

is given by

Wmk =
Ĝmk√

K E
{

tr
(
ĜmkĜH

mk

)} =
Ĝmk√

KN
(∑L

l=1 γmkl

) .
(14)
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The normalization factor in (14) is chosen to satisfy the
constraint (11).

III. PERFORMANCE ANALYSIS

A. Asymptotic Analysis

In this section, we provide some insights into the perfor-
mance of cell-free massive MIMO under IQI, when M is
very large, while K, L, and N are kept fixed. By using
Tchebyshev’s theorem [13], as M →∞, we have

1

M

M∑
m=1

GH
mkA1Wmk −

1

M
Ξ1,mk

P→ 0, (15)

where
P→ represents convergence in probability, where

Ξ1,mk =

M∑
m=1

E

GH
mkA1

Ĝmk√
KN

∑L
l=1 γmkl

 . (16)

Substituting (7) into (16) and using the fact that
E
{
GH
mkA1K2G

∗
mk

}
= 0, E

{
GH
mkA1W̃

∗
mk

}
= 0, we

obtain

Ξ1,mk =

M∑
m=1

E

GH
mkA1

ΩΩΩmk
√
τρpK1Gmk√

KN
∑L
l=1 γmkl


=

M∑
m=1

∑L
l=1 βmkA1,lωmklK1,l

√
τρp√

KN
∑L
l=1 γmkl

=

M∑
m=1

∑L
l=1A1,lγmkl√

KN
∑L
l=1 γmkl

IN , (17)

where in the last equality, we have used (9). Similarly, as
M →∞, for k 6= k′, we have

1

M

M∑
m=1

GH
mkA2W

∗
mk −

1

M
Ξ2,mk

P→ 0, (18)

1

M

M∑
m=1

GH
mkA1Wmk′

P→ 0, (19)

1

M

M∑
m=1

GH
mkA2W

∗
mk′

P→ 0, (20)

where

Ξ2,mk =

M∑
m=1

∑L
l=1A2,lγmklK

∗
2,l/K

∗
1,l√

KN
∑L
l=1 γmkl

IN . (21)

From (15), (18), (19), and (20), as M →∞, we obtain

rk
M
− 1

M
(
√
ρdΞ1,mksk +

√
ρdΞ2,mks

∗
k)

P→ 0. (22)

We can see from the above result that the received signal
(normalized by M ) includes only the desired signal plus
interference due to the IQI. This implies that when M →∞,
the inter-user interference and noise disappear. However, the
effect of IQ imbalance persists.

B. Achievable SE

In this section, we derive the achievable SE for finite M .
The signal received at the kth user (13) can be rewritten as

rk =
√
ρd

M∑
m=1

GH
mkA1Wmksk

+
√
ρd

K∑
k′ 6=k

M∑
m=1

GH
mkA1Wmk′sk′

+
√
ρd

M∑
m=1

K∑
k′=1

GH
mkA2W

∗
mk′s

∗
k′ + nk. (23)

By using (23) together with the fact that the users know only
the statistical property of the channels, we obtain the following
achievable SE.

Theorem 1: The achievable SE of the kth user in a cell-free
massive MIMO system under IQI in bit/s/Hz is

Rk = (T − τ)/T

× log2

∣∣∣IN + Csk,rk (Crk,rk −Crk,skCsk,rk)
−1

Crk,sk

∣∣∣ ,
(24)

where T is the coherence interval in symbols,

Csk,rk =
√
ρd E

{
M∑
m=1

GH
mkA1Wmk

}H
, (25)

Crk,rk = ρd E

{
K∑
k′=1

Υkk′,1ΥH
kk′,1

}

+ ρd E

{
K∑
k′=1

Υkk′,2ΥH
kk′,2

}
+ IN , (26)

Crk,sk = CH
sk,rk

, (27)

and Υkk′,1 ,
∑M
m=1 GH

mkA1Wmk′ , Υkk′,2 ,∑M
m=1 GH

mkA2W
∗
mk′ .

Proof: See Appendix VI-B.

IV. NUMERICAL RESULTS

In this section, numerical results are generated to investigate
the performance of the cell-free massive MIMO under the
IQ-impaired effect. This is performed through an analysis of
the sum SE which is defined as SE =

∑K
k=1Rk. The uplink

training duration is set equal to the number of data streams
τ = KN while the coherence interval is T = 200. We
choose βmk = 1 for all m, k, ρd = 10 dB, and ρp = 0 dB.
Additionally, the IQI coefficients at the AP antenna for both
the uplink training and the downlink transmission phases are
set as equal, i.e., fl = gl and αl = θl, for l = 1, . . . , L.

Fig. 1 presents the impact that increased IQI has on the
performance of cell-free massive MIMO with varying numbers
of AP antennas. Since the phase mismatch is chosen as θl =
αl = 0◦, the amplitude gl = 1 corresponds to perfect IQ
matching. As expected, when gl reduces from 1 to 0.2, the
sum SE reduces. The IQI shows significant effect on cell-free
massive MIMO only when gl is below 0.6. Additionally, the
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Fig. 1. Sum SE versus the amplitude mismatch with phase mismatch θl =
αl = 0◦, at N = 2, K = 20 and M = 50.
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Fig. 2. Sum SE versus the number of AP M , for perfect and imperfect IQI,
at N = 2 and K = 20.

performance gains from increasing the number of AP antennas
can also be observed; these gains remain relatively consistent
across the changing IQI values.

The impact that the number of APs have on both, a perfectly
IQ matched and an IQ impaired system, is evaluated in Fig. 2.
The system under IQI has parameters gl = 0.3 and θl = 15◦.
In Fig. 2, the performance gains from an increased number of
APs are displayed across all operating conditions. The sum
SE of a perfectly IQ matched system is seen to increase
without bound, however, the IQ impaired system is shown
to be severely limited despite the increase in the number of
APs. Specifically, the sum SE of the IQ imbalanced system
begins to converge towards a limit, therefore, the performance
is bounded. This supports our theoretical analysis on the
achievable SE in Section III-A, in particular, as M → ∞
the IQI will remain.

Fig. 3 investigates the performance of an increased number
of users for perfect and impaired IQ matching. The IQI,
parameters are gl = αl = 0.5 and θl = αl = 15◦ and the
system setup was repeated for user antennas N = 1 and
N = 2. The results show that the performance will reach
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Fig. 3. Sum SE versus the number of served users K, for perfect and
imperfect IQI, at L = 2 and M = 50.

a maximum point. This is because the channel estimation
overhead KN will limit the gains produced by the number
of users and user antennas. The relative loss of performance
due to the IQI is shown to remain mostly constant across all
the operating values.

V. CONCLUSION

We have investigated the impact of IQI in cell-free massive
MIMO with multiple-antenna users. The achievable SE was
derived taking into account the imperfect channel knowledge
at the APs and no small-scale fading knowledge at the users.
The results revealed the impact of IQ impaired hardware on
the cell-free system to be mostly uniform, across a range
of operating conditions. Using both analytical and numerical
analysis, the presence of IQI was shown to remain as the
number of APs increases large. More work on this topic is
needed to develop an advanced IQI compensation technique
to neutralize this issue.

VI. APPENDIX

A. Derivation of (7)
From the definition of Ñmk in (6), we have

Cñmk
= E

{
ñmkñ

H
mk

}
= τρpβmk

(
IN ⊗

(
K2K

H
2

))
+ Jmk, (28)

where

Jmk = E
{

vec
(
W̃mk

)(
vec
(
W̃mk

))H}
= E

{
vec(K1Wmk+K2W

∗
mk)(vec(K1Wmk+K2W

∗
mk))

H
}

= IN ⊗
(
K1K

H
1

)
+ IN ⊗

(
K2K

H
2

)
. (29)

The above derivation utilizes vec (K1Wmk) =
(IN ⊗K1) vec (Wmk) and vec (K2W

∗
mk) =

(IN ⊗K2) vec (W∗
mk). Substituting (29) into (28), we

obtain

Cñmk
= τρpβmk

(
IN ⊗

(
K2K

H
2

))
+ IN ⊗

(
K1K

H
1

)
+ IN ⊗

(
K2K

H
2

)
. (30)
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Substituting (30) into (6) obtains

vec
(
Ĝmk

)
= βmk

√
τρp

(
IN ⊗KH

1

)
×
(

IN ⊗
(
τρpβmkK1K

H
1 + τρpβmkK2K

H
2

+ K1K
H
1 + K2K

H
2

))−1
vec (Yimb,mk)

= βmk
√
τρpIN ⊗

[
KH

1

×
(
τρpβmkK1K

H
1 + τρpβmkK2K

H
2

+ K1K
H
1 + K2K

H
2

)−1]
vec (Yimb,mk) . (31)

From (31) and the identity vec(ABC) = CT ⊗Avec(B), (7)
can be derived.

B. Proof of Theorem 1

To find an achievable SE of the kth user, we start with the
mutual information of rk and sk as

I (rk, sk) = h (sk)− h (sk|rk)

= log2 |πeIN | − h (sk − ŝk|rk) (32)

where h(·) is the differential entropy, ŝk is the linear MMSE
estimate of sk given rk. Since the condition reduces the
entropy, (13) becomes

I (rk, sk) ≥ log2 |πeIN | − h (sk − ŝk)

≥ log2 |πeIN | − log2

∣∣∣πeE{‖sk − ŝk‖2
}∣∣∣ (33)

where the last inequality follows the fact that the differential
entropy of a RV is maximized when the RV is Gaussian with
the same variance. In (33), E

{
‖sk − ŝk‖2

}
is the MSE of the

linear MMSE which is given by [12, Eq. (12.8)]

E
{
‖sk − ŝk‖2

}
= Csk,sk −Csk,rkC−1rk,rk

Crk,sk , (34)

where

Csk,sk = E
{
sks

H
k

}
= IN , (35)

Csk,rk = E
{
skr

H
k

}
=
√
ρd E

{
M∑
m=1

GH
mkA1Wmk

}H
,

(36)

Crk,rk = E
{
rkr

H
k

}
= ρdE


K∑
k′=1

(
M∑
m=1

GH
mkA1Wmk′

)(
M∑
m=1

GH
mkA1Wmk′

)H
+ρd E


K∑
k′=1

(
M∑
m=1

GH
mkA2W

∗
mk′

)(
M∑
m=1

GH
mkA2W

∗
mk′

)H
+ IN , (37)

and

Crk,sk = E
{
rks

H
k

}
=
√
ρd E

{
M∑
m=1

GH
mkA1Wmk

}
. (38)

Substituting (34) into (33), we obtain

I (rk, sk) ≥ log2 |πeIN |
− log2

∣∣πe (Csk,sk −Csk,rkC−1rk,rk
Crk,sk

)∣∣
≥ log2

(
1∣∣Csk,sk −Csk,rkC−1rk,rkCrk,sk

∣∣
)

≥ log2

∣∣∣(IN −Csk,rkC−1rk,rk
Crk,sk

)−1∣∣∣ . (39)

By using the matrix inversion lemma, we obtain(
IN −Csk,rkC−1rk,rk

Crk,sk

)−1
= IN + Csk,rk (Crk,rk −Crk,skCsk,rk)

−1
Crk,sk . (40)

Therefore,

I (rk, sk)

≥ log2

∣∣∣∣(IN+Csk,rk (Crk,rk−Crk,skCsk,rk)
−1

Crk,sk

)−1∣∣∣∣ .
(41)

From (41), we can arrive at the desired result in Theorem 1.
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