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Abstract—This paper presents a novel strategy to decentralize
the soft detection procedure in an uplink cell-free massive
multiple-input-multiple-output network. We propose efficient ap-
proaches to compute the a posteriori probability-per-bit, exactly
or approximately, when having a sequential fronthaul. More
precisely, each access point (AP) in the network computes partial
sufficient statistics locally, fuses it with received partial statistics
from another AP, and then forward the result to the next AP.
Once the sufficient statistics reach the central processing unit, it
performs the soft demodulation by computing the log-likelihood
ratio (LLR) per bit, and then a channel decoding algorithm (e.g.,
a Turbo decoder) is utilized to decode the bits. We derive the
distributed computation of LLR analytically.

Index Terms—Beyond 5G, radio stripes, cell-free Massive
MIMO, distributed computation, LLR.

I. INTRODUCTION

Cell-free massive multiple-input-multiple-output (mMIMO)
is envisaged to be one of the beyond 5G technologies [1].
It is a decentralized implementation of mMIMO with no cell
boundaries as opposed to the traditional cellular networks [2]–
[5]. In cell-free mMIMO, many access points (APs) are
deployed in a geographical area to serve the user equipments
(UEs) jointly whereby providing macro-diversity gain [3]. An
AP is a circuitry that comprises antenna elements and the
signal processing units required to operate them locally. Differ-
ent from other distributed MIMO technologies, the operating
regime has many more APs than UEs, but each AP has much
fewer antennas than there are UEs and, thus, must cooperate
with other APs to manage interference. The topology of the
interconnections between the APs is arbitrary, e.g., star, daisy-
chain, etc., depending on the application.

The original idea of a cell-free network was to have a
star topology, i.e., each AP has a dedicated fronthaul (a link
between two nodes) to the CPU [2]. In this network, all the
APs estimate the channel locally and make a local estimate
of the data. Then all the APs share the estimated data with
the CPU, which decodes the information signals. In [6], [7],
different implementation architectures with varying levels of
cooperation between the APs and CPU are studied. In the
centralized implementation, the CPU has global information
and thereby always has the superior performance, say in terms
of spectral efficiency (SE), over distributed implementations
with partial information at the CPU. On the other hand, this
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type of implementation increases the overall fronthaul capacity
(amount of information shared to the CPU) and also the
cost of deployment if a wired implementation is considered.
One possible solution to address these issues is by decen-
tralizing the network operating using efficient algorithms that
can distribute the signal processing computation and ensure
minimal loss in the performance, such as SE and bit-error-rate
(BER), compared to the centralized network implementation.
A few other benefits of distributed signal processing are system
reliability, scalability of the network to setups with many APs
and UEs, and privacy. Some possible choices for decentralized
topologies are sequential, tree network, etc., where the APs
process its information locally and forward partial information
to the CPU [8], [9]. For example, [8] studied the sequential
topology for a so-called radio stripes network. In a radio stripe
network [3], the APs are sequentially connected (i.e., using a
daisy-chain architecture) and share the same cables for front-
haul and power supply.

The algorithms developed for decentralizing mMIMO in
the literature can be adopted in a cell-free mMIMO network,
but these algorithms do not take advantage of cooperation
among APs effectively. In the literature, the works focusing on
the decentralized implementation of mMIMO are: [10] where
the authors designed a decentralized implementation of an
approximate zero-forcing (ZF) precoding; [11] that explored
various algorithms to decentralize ZF precoding in uplink
and downlink with different algorithms providing a trade-off
between fronthaul signaling and latency; on the similar lines
decentralized ZF methods are also studied in the context of
large intelligent surfaces, and one such example is [12]. A
few other relevant works on the decentralized implementation
of mMIMO are discussed [9], [13]–[16]. A recent work
that focused on cell-free mMIMO networks with distributed
algorithms is [8], in which the authors developed a sequentially
distributed algorithm in a radio stripes network that achieves
the maximum SE.

Contribution: In practice, system design should ensure that
the performance at the bit level is ensured over SE or other soft
estimate metrics like the mean-square error (MSE) because the
information is transmitted in bits with finite length codewords.
We focus on establishing an approach to decode the informa-
tion at the bit level by computing the likelihood of a bit. There
is no prior work that computes the posterior bit likelihood
in a distributed network. We investigate the computation of
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Fig. 1: Sequential architecture of cell-free mMIMO network.

the likelihood of the transmitted bits and analytically derive
a method to compute the log-likelihood ratio (LLR) of the
bits in decentralized networks, specifically in sequentially
connected or tree networks. The new method requires less
fronthaul signaling than a centralized implementation. Besides
computing distributed LLRs, the important features of the
proposed algorithm are that it holds for imperfections in the
channel state information (CSI) and is scalable with respect
to the number of APs in the network. This work essentially
shows that the optimal non-linear detector (in the sense of
bit-error-rate) can be decentralized.

Notations: The superscripts (·)∗, (·)T , and (·)H denote
conjugate, transpose, and Hermitian transpose, respectively.
The N × N identity matrix is IN . A block diagonal ma-
trix is denoted by bldiag(A1, . . . ,AN ) with square matri-
ces A1, . . . ,AN . We denote expectation by E{·}. We use
z ∼ CN (0,C) to denote a multi-variate circularly symmetric
complex Gaussian random vector with zero mean and covari-
ance matrix C. We denote the probability density function
(PDF) of a random variable x by f(x).

II. SYSTEM MODEL AND CHANNEL ESTIMATION

We consider a cell-free mMIMO network comprising L APs
connected in a daisy-chain architecture, each equipped with
N ≥ 1 antennas. Without loss of generality, the fronthaul
connection is assumed to have the sequence AP 1 - AP 2 - AP
3 - · · · - AP L - CPU, where the CPU is located at the end of
the network as shown in Fig. 1. A radio stripes network [3] is
one example of such an architecture. The algorithm proposed
in this paper can also be extended to a tree network [9].

There are K � NL single-antenna UEs distributed arbitrar-
ily in the considered coverage area. We use the block fading
channel model with the coherence block length of τc channel
uses. The channel between AP l and UE k is denoted by
hkl ∈ CN . In each block, an independent realization is drawn
from a correlated Rayleigh fading distribution as

hkl ∼ CN (0,Rkl) , (1)

where Rkl ∈ CN×N is the spatial correlation matrix, which
attributes the channel spatial correlation characteristics and
large-scale fading. We assume APs are sufficient distant apart
to assume that there is no correlation between APs. We also
assume that the spatial correlation matrices {Rkl} are known
at all the APs.

This paper analyzes an uplink scenario consisting of τp and
τc− τp channel uses for the pilot transmission to estimate the
channels and the payload data, respectively.

A. Channel Estimation

We assume that there are τp mutually orthogonal τp-length
pilot vector signals φ1, φ2, . . . , φτp with ‖φk‖2 = τp, which
are used for channel estimation. When K > τp, more than
one UE is assigned with the same pilot, which causes pilot
contamination. We let the pilot assigned to UE k, where k =
1, . . . ,K, to be indexed as tk ∈ {1, . . . , τp} and the set Sk =
{i : ti = tk} accounts for those UEs assigned with the same
pilot as that of UE k. The received signal at AP l during the
pilot transmission is Yp

l ∈ CN×τp , given by

Yp
l =

K∑
i=1

√
pihilφ

T
ti + Nl, (2)

where pi ≥ 0 is the transmit power of UE i, Nl ∈ CN×τp is
the additive white Gaussian receiver modeled with independent
entries distributed as CN (0, σ2) with σ2 being the noise
power. The minimum mean square error (MMSE) estimate
ĥkl ∈ CN×1 of the channel is given by [7]

ĥkl =
√
pkτpRklΨ

−1
tkl

yptkl, (3)

where
yp
tkl

= Yp
l

φ∗tk√
τp

=
∑
i∈Sk

√
piτphil + ntkl, (4)

Ψtkl =
∑
i∈Sk

τppiRil + σ2IN (5)

are the despreaded signal and its covariance matrix, respec-
tively. Here, ntkl , Nlφ

∗
tk
/
√
τp ∼ CN

(
0, σ2IN

)
is the ef-

fective noise. An important consequence of MMSE estimation
is that the estimate ĥkl ∼ CN (0, R̂kl) and the estimation
error h̃kl = hkl − ĥkl ∼ CN (0, R̃kl) are independent, with
R̂kl = pkτpRklΨ

−1
tkl

Rkl, R̃kl = Rkl − R̂kl as the respective
covariance matrices.

B. Uplink Payload Transmission

During the uplink payload transmission phase, UE k trans-
mits data symbols sk ∈M from the signal constellation alpha-
bet M = {a1, . . . , aM} comprising M symbols. We assume
the symbols transmitted by UE k are chosen independently of
UE m for k 6= m. The received signal yl ∈ CN at AP l is

yl = Hls + nl, (6)
where Hl = [h1l,h2l, . . . ,hKl] ∈ CN×K is the channel
matrix, s = [s1, s2, . . . , sK ]T ∈ MK is the transmit signal
vector, and nl ∼ CN

(
0, σ2IN

)
is the AP l receiver noise.

We assume that symbols transmitted by UEs are equally likely,
i.e., s is uniformly distributed over MK .

Let Hl = Ĥl + H̃l with Ĥl = [ĥ1l, ĥ2l, . . . , ĥKl] being
the channel matrix estimate and H̃l = [h̃1l, h̃2l, . . . , h̃Kl] is
the channel estimation error matrix with h̃kl = hkl − ĥkl.
Accordingly, (6) is equivalent to

yl = Ĥls + wl, (7)

where wl = H̃ls + nl can be thought of as a colored noise
term at AP l. An important attribute of wl, which we will
exploit later, is that for given s it is conditionally Gaussian
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with zero conditional mean and conditional covariance, given
by

Σl|s = E{wlw
H
l |s} =

K∑
i=1

|si|2R̃il + σ2IN . (8)

Besides being conditionally Gaussian, wl is also conditionally
independent to wm, l 6= m for a given s.

III. DECENTRALIZED DETECTION

The important task of the receiver is to detect the most prob-
able transmitted symbol sequences based on the information
available at the receiver. Designing reliable MIMO detectors
poses a huge challenge due to the complexity involved in the
implementation. We refer to [17], [18] for detailed reviews of
MIMO detection methods. In the literature, there are broadly
speaking two types of detectors for the detection of transmitted
symbols (or bits): hard-decision and soft-decision detectors.
Examples of hard-decision detectors include maximum likeli-
hood (ML) and maximum a posteriori (MAP) methods. On the
other hand, the soft-decision detectors quantify how reliable
are the decisions on the symbols (or bits) in the information-
carrying signals. In most cases, the soft-decision detectors have
superior performance over the hard-decision detectors [19].

The standard MIMO detection methods are appropriate for
systems with co-located antennas, where the receiver can
operate close to the antenna array and, thus, have access to
all the CSI that exist in the system. However, the standard
non-distributed methods are not suitable for cell-free mMIMO
where the CSI is distributed between many APs, each esti-
mating a subset of the channels, observing a subset of the
received data signals, and having local processing capabilities.
In principle, all the APs could send their information to the
CPU, which can implement a standard detection method, but
this requires a lot of fronthaul signaling and is not making
use of the local processors. We want to take advantage of
the distributed computation capabilities to develop distributed
MIMO detection algorithms that also require less fronthaul
signaling. We start by briefly discussing the implementation
of the MAP hard-decision detector in a distributed network
and then consider soft-detectors (specifically, computation of
bit-likelihood ratios), which is the main focus of this paper.

We first describe a centralized detector that will serve as
our benchmark. A centralized cell-free network with L APs
operates in two phases. In the first phase, all the APs send the
pilot signals to the CPU from which it estimates the channel,
and then the CPU receives the data signal from which it forms
the following augmented received signal

zL = ĜLs + wL (9)

with zL =
[
yH
1 , . . . ,y

H
L

]H
, ĜL =

[
ĤH

1 , . . . , Ĥ
H
L

]H
, wL =[

wH
1 , . . . ,w

H
L

]H
, where zL ∈ CNL×1 is the received signal

for all APs, ĜL ∈ CNL×K is the matrix with channel
estimates, and wL ∈ CNL×1 is the colored noise. The
noise vector wL is conditionally Gaussian for a given s
with zero mean and has the conditional covariance KL|s =
bldiag

(
Σ1|s, . . . ,ΣL|s

)
.

A. MAP Detector for Hard Detection
The MAP detector for a centralized cell-free network is

defined as follows:

ŝL = argmax
s∈MK

f
(
s|zL, ĜL

)
(10)

(a)
= argmin

s∈MK

∥∥∥K−1/2

L|s

(
zL − ĜLs

)∥∥∥2 + ln
(
det
(
KL|s

))
,

where (a) is obtained by applying Bayes’ rule along with
utilizing the conditional Gaussian distribution of zL and uni-
form distribution of s, and then taking the logarithm of the
argument and simplifying. Interestingly, the last expression in
(10) can be computed in a sequential manner:

ŝL = argmin
s∈MK

L∑
l=1

[∥∥∥Σ−1/2

l|s

(
yl − Ĥls

)∥∥∥2 + ln(det(Σl|s))

]
= argmin

s∈MK

[
bL|s + sHML|ss− 2R

{
aH
L|ss

}
+ cL|s

]
,

(11)

where the variables appearing on the second row can be
computed iteratively as follows:

bl|s = b(l−1)|s + ‖rl|s‖2,
Ml|s = M(l−1)|s + ĈH

l|sĈl|s,

al|s = a(l−1)|s + ĈH
l|srl|s,

cl|s = c(l−1)|s + ln(det(Σl|s)),

(12)

where rl|s = Σ
−1/2
l|s yl, Ĉl|s = Σ

−1/2
l|s Ĥl for l = 1, . . . , L.

The computation is initiated by M0|s being a K ×K matrix
with zeros, b0|s = 0, c0|s = 0, and a0|s is a K × 1 zero
vector. Hence, the exact MAP detector can be implemented
in a sequential manner that fits the sequential fronthaul ar-
chitecture shown in Fig. 1. AP l computes the variables
{bl|s,Ml|s,al|s, cl|s} according to (12) and forwards them to
AP (l + 1). When the CPU receives {bL|s,ML|s,aL|s, cL|s}
from the last AP, it can compute the cost function in (11) and
make the MAP detection.

The proposed sequential implementation limits the informa-
tion that must flow from the APs towards the CPU. However, a
main issue is that {bl|s,Ml|s,al|s, cl|s} depend on s and, thus,
must be computed for all possible combinations of s ∈ MK

making its practical implementation difficult. The dependence
enters into the expression through the conditional covariance
Σl|s, defined in (8). If phase-shift keying (PSK) is utilized so
that |si|2 = pi for all si ∈ M, then the dependence on s
disappears since

Σl|s =

K∑
i=1

piR̃il + σ2IN . (13)

We can also employ this as an approximation for modulations
with amplitude variations.

Using (13), we now introduce a set of variables that do not
depend on s: Σl = Σl|s, rl = rl|s, al = al|s, Ĉl = Ĉl|s,
Ml = Ml|s, for all l = {1, 2, . . . , L} under the condition that
|si|2 = pi,∀i ∈ {1, 2, . . . ,K}. By removing the terms that do
not explicitly depend on s in (11), the MAP detection at the
CPU can now be computed as

ŝL = argmin
s∈MK

[
sHMLs− 2R

{
aHL s

}]
. (14)
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Fig. 2: Percentage of fronthaul saved by the proposed algo-
rithm compared to centralized implementation.

B. Fronthaul signaling comparison

We will now quantify the difference in fronthaul signaling
between a centralized implementation and the proposed se-
quential implementation, based on the simplification in (13).
We measure the fronthaul signaling in terms of the number
of real symbols shared in the link connecting AP L with the
CPU. In a centralized implementation, to compute (10), each
AP has to send the following information to the CPU: (i) yl
which amounts to 2N real symbols in every channel use and
(ii) pilot signals 2Nτp per coherence block. This sums up to
2NLτc real symbols per coherence block and all the fronthaul
traffic must pass through AP L. With the proposed sequential
implementation, AP L has to forward: (i) aL for every channel
use, amounting to 2K real symbols and (ii) ML once in every
coherence block, containing K2 real symbols. This sums up
to 2K(τc− τp) +K2 real symbols per coherence block. Note
that the fronthaul signaling of the centralized implementation
grows linearly with L, the number of APs. On the other hand,
the fronthaul requirement in sequential topology textcolorblack
more efficiently distributed in the links and with the proposed
algorithm, the fronthaul in the link connecting the CPU and
AP L is independent of the number of APs, making it scalable
for use in networks with many APs.

Fig. 2 shows the percentage of fronthaul signaling that is
saved by the sequential implementation over a centralized
implementation for τc = 2000, τp = K, N = 4. We
observe that the fronthaul saving is large and almost constant
as we increase L for a fixed L/K ratio. If K is fixed, the
fronthaul signaling saved increases rapidly with L, e.g., for
L = 24, N = 4, K = 8, τc = 2000, τp = 8, the
sequential implementation requires approximately 91% less
fronthaul signaling than the centralized implementation.

C. LLR Calculation for Soft Detection

The transmitted vector s contains bits that represent some
underlying information. In practice, a long sequence of bits
corresponds to a codeword from a channel code, thus we do
not want to make a hard detection of the individual bits but of
the entire codeword. To this end, the receiver should compute
the likelihood of the bits and provide it as soft input to the
decoding algorithm of the channel code (e.g., a turbo decoder).
We will develop a sequential algorithm for that case.

Let the number of bits required to represent each symbol in
s be m = log2(M) (e.g., m = 2 represents Quadrature phase-
shift keying (QPSK)), therefore the vector s has a total of mK
bits. We also assume that these bits are independent (can be
achieved in practice with interleaver) and equally likely. We
denote these bits as b1, . . . , bmK . The associated a priori LLR
of each bit bi is given by

L(bi) = ln

(
P (bi = 1)

P (bi = 0)

)
. (15)

The posterior LLR for a centralized implementation using
the conditional density function in (10) (b) and with the
assumption that s is uniformly distributed is given by:

L(bi|zL) = ln

(∑
s:bi(s)=1 f(zL|s, ĜL)∑
s:bi(s)=0 f(zL|s, ĜL)

)
. (16)

The notation s : bi(s) = α means the set of all vectors
s for which the ith bit is α i.e., bi(s) = α. After the
likelihood values of the bits are computed using (16), the
channel decoder decodes the data bits. However, it is known
that the computational complexity of (16) increases exponen-
tially with the increase in the number of UEs [20], this is
because the summation in (16) contains 2mK terms. To address
this problem, many sub-optimal solutions exist and one such
method is called max-log approximation [21]. In this method,
each of the sums in (16) is approximated with their largest
term. Accordingly, (16) is written as

L(bi|zL)
(a)
= ln

(
maxs:bi(s)=1 f(zL|s, ĜL)

maxs:bi(s)=0 f(zL|s, ĜL)

)
= min

s:bi(s)=0

∥∥∥K−1/2

L|s

(
zL − ĜLs

)∥∥∥2−
min

s:bi(s)=1

∥∥∥K−1/2

L|s

(
zL − ĜLs

)∥∥∥2 ,
(17)

where (a) follows from (13) and, thus, is exact for PSK
modulations and an approximation otherwise. We will now
show how to implement both exact and log-max approximate
LLR computation in a sequential manner that fits a cell-free
mMIMO network of the kind in Fig. 1. We define the following
notation, to simplify the LLR analytical expressions:

ψ
′ (

s,ML,aL|s
)
= exp

(
−sHMLs + 2R

{
aL|ss

})
,

ψ (s,ML,aL) = exp
(
−sHMLs + 2R{aLs}

)
.

(18)

The exact posterior LLR computation in (16) can be imple-
mented in an distributed manner by re-writing (16) as

L(bi|zL) = ln

(∑
s:bi(s)=1 dL|sexp

(
−bL|s

)
ψ

′
(s,ML,aL|s)∑

s:bi(s)=0 dL|sexp
(
−bL|s

)
ψ′(s,ML,aL|s)

)
,

(19)
where

dl|s = d(l−1)|sdet(Σl|s)
−1, d0|s = 1; l = {1, . . . , L}. (20)

The LLR computation in (16) is equivalent to that in (19).
Hence, we have obtained a sequential way to compute the a
posteriori bit LLRs in a cell-free mMIMO system. For the
CPU to compute the exact LLR, each AP has to compute
and forward the terms given in (12). The main bottleneck in
(19) is the dependency of the conditional covariance on the
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Algorithm 1 Decentralized MAP/Soft-detectors given in (14),
(21) and (23) for sequential network.

1. Initialize: M0 = 0, a0 = 0;
2. for l = 1 : L

(i) Compute Ml = M(l−1) + ĈH
l Ĉl

(ii) Compute al = a(l−1) + ĈH
l rl

end
3. Output: Compute the MAP detector/soft-detectors ex-
pressions given in (14), (21) and (23).

transmitted symbols in every channel use, having the same
computational complexity as discussed for the MAP rule. This
can be simplified by making use of the property in (13), which
is exact for PSK modulation and otherwise an approximation.
Thus, the LLR computation can be simplified as

L(bi|zL) = ln

(∑
s:bi(s)=1 ψ(s,ML,aL)∑
s:bi(s)=0 ψ(s,ML,aL)

)
. (21)

Similarly, the max-log approximation can be computed in
a decentralized manner as follows

L(bi|zL) = ln

(
maxs:bi(s)=1 dL|sexp

(
−bL|s

)
ψ

′
(s,ML,aL|s)

maxs:bi(s)=0 dL|sexp
(
−bL|s

)
ψ′(s,ML,aL|s)

)
.

(22)
Similar to (21), the complexity involved in max-log compu-
tation for a decentralized network can be reduced by making
the assumption in (13), thus (22) becomes

L(bi|zL) = min
s:bi(s)=1

ln(ψ(s,ML,aL))

− min
s:bi(s)=0

ln(ψ(s,ML,aL)).
(23)

A pseudo-code for implementing the proposed sequential hard
and soft detectors is given in Algorithm 1.

To summarize, the computation of the exact and max-log
approximation, given in (16) and (17), respectively, can be
implemented in a decentralized manner as given in (19) and
(21), respectively. This implementation fits a cell-free mMIMO
network with a sequential fronthaul. Moreover, a relaxed
version with lower computational complexity considering the
assumption in (13) for both distributed exact and max-log
approximated of LLR are given in (21) and (23) respectively.
One of the drawbacks of the proposed method is latency which
grows linearly with L. Nevertheless, the advantages of radio
stripes implementation outweigh the drawbacks in non-latency
critical applications.

IV. CONCLUSION

This paper introduces a novel method to compute a posteri-
ori bit LLRs analytically in a decentralized manner in cell-free
mMIMO networks when there is a sequential fronthaul, as in
radio stripes networks. The proposed method has two impor-
tant practical features. First, it is designed for imperfect CSI
scenarios. Second, the fronthaul load required is independent
of number of APs, i.e., the algorithm is scalable with respect
to the number of APs. While previous works focused on
the distributed computation of MMSE-based algorithms, this
paper focuses on the distributed computation of bit likelihood
which is an important quantity of interest practically.

REFERENCES

[1] J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J.
Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1637–
1660, 2020.

[2] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Transactions on
Wireless Communications, vol. 16, no. 3, pp. 1834–1850, 2017.

[3] G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and E. G. Lars-
son, “Ubiquitous cell-free massive MIMO communications,” EURASIP
Journal on Wireless Communications and Networking, vol. 2019, no. 1,
p. 197, 2019.

[4] O. T. Demir, E. Björnson, and L. Sanguinetti, “Foundations of user-
centric cell-free massive MIMO,” Foundations and Trends® in Signal
Processing, vol. 14, no. 3-4, pp. 162–472, 2021.

[5] J. Zhang, S. Chen, Y. Lin, J. Zheng, B. Ai, and L. Hanzo, “Cell-free
massive MIMO: A new next-generation paradigm,” IEEE Access, vol. 7,
pp. 99 878–99 888, 2019.

[6] E. Nayebi, A. Ashikhmin, T. L. Marzetta, and H. Yang, “Cell-free
massive MIMO systems,” in 49th Asilomar Conference on Signals,
Systems and Computers, Nov 2015, pp. 695–699.

[7] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive MIMO networks:
Spectral, energy, and hardware efficiency,” Foundations and Trends® in
Signal Processing, vol. 11, no. 3-4, pp. 154–655, 2017.

[8] Z. H. Shaik, E. Björnson, and E. G. Larsson, “MMSE-optimal sequential
processing for cell-free massive mimo with radio stripes,” arXiv preprint
arXiv:2012.13928, 2020.

[9] E. Bertilsson, O. Gustafsson, and E. G. Larsson, “A scalable architecture
for massive MIMO base stations using distributed processing,” in 50th
Asilomar Conference on Signals, Systems and Computers, 2016, pp.
864–868.
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[16] I. Atzeni, B. Gouda, and A. Tölli, “Distributed joint receiver design for
uplink cell-free massive MIMO,” in IEEE International Conference on
Communications Workshops (ICC Workshops), 2020, pp. 1–6.

[17] E. G. Larsson, “MIMO detection methods: How they work [lecture
notes],” IEEE Signal Processing Magazine, vol. 26, no. 3, pp. 91–95,
2009.

[18] M. A. Albreem, M. Juntti, and S. Shahabuddin, “Massive MIMO de-
tection techniques: A survey,” IEEE Communications Surveys Tutorials,
vol. 21, no. 4, pp. 3109–3132, 2019.

[19] J. G. Proakis and M. Salehi, Digital Communications. McGraw-Hill,
2007.
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