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Abstract—Deep learning is becoming a fundamental piece
for the paradigm shift from evidence-based medicine to data-
based medicine. However, its learning capacity is rarely exploited
when working with small data sets. This issue, along with
data imbalance, affects the performance in predictive models
of mortality using the follow-up of patients in end-stage renal
disease (ESRD). Such drawbacks can be addressed by integrating
a transfer learning approach to transfer knowledge from an
auxiliary domain. We transfer information from patients with
acute kidney injury (AKI) from the massive MIMIC-III database
to ESRD in the proposed method. Increasing samples in ESRD
allows to benefit from the predictive capacity of DL-based
models and reduce the effect of data imbalance. In the proposed
approach, autoencoders are trained in both domains. Then, latent
data representations are extracted. Both domains are then linked
through a mapping matrix that relates their latent representation.
With this matrix, it is possible to transfer samples from AKI to
ESRD. The proposed method is evaluated in several scenarios in
which both the latent spaces and the percentage of data imbal-
ance are modified. The experiments have shown that increasing
the number of samples implies a significant improvement in the
predictive models when the class with imbalance is included.
Finally, the proposed approach is compared with the Constructive
Covering Algorithm, an improved version of SMOTE that is the
most common strategy to deal with data imbalance. The proposed
method offers better performance.

Index Terms—Transfer learning, deep learning, autoencoder,
mortality prediction, kidney disease

I. INTRODUCTION

In the Big Data era, deep learning (DL) is becoming a
fundamental piece in the paradigm shift from evidence-based
medicine to data-based medicine [1]. DL exploits complex
relationships through a latent representation of data and sup-
port decisions in the medical field [2]. DL has significantly
impacted medical applications supported by large amounts of
data [3]. However, in pathologies with a small volume of data,
DL performance is not exploited. This effect usually occurs in
specialized hospital units with few patients and whose volume
of information is small compared to the hospital itself or other
medical institutions. Another obstacle that DL challenges is
the generalization problem in learning tasks with imbalanced
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data. Examples of these tasks include pathology prediction
[4], rare event detection [5], or mortality prediction [7]. In
such studies, a learning task is usually performed to predict
outcomes of patients where there are many more samples for
one class than the other ones. For instance, in a previous work
of mortality prediction in patients in end-stage renal disease
(ESRD) [7], only the last samples from the follow-up of the
patients were part of the deceased class, generating a class
imbalance in the range of 76-94%. Some of the alternatives
to reduce the impact of this issue are based on the generation
of samples of the unbalanced class or using oversampling of
the minority class and downsampling of the majority one [8],
[9]. Another alternative that tackles both issues: the amount
of data and the data imbalance, is to support the learning
task with related diseases from other information sources. This
transfer of information from one domain to another is known
as transfer learning (TL) [10].

There is a growing interest in TL in medicine [6]. For
instance, in medical image analysis, artificial neural networks
(ANN) are trained in the source domain, then fine-tuned
with data in the target domain and perform a learning task
[11]-[13]. Although a pre-trained ANN is extremely useful,
this approach is not suitable for augmenting samples in a
data sets with samples from another domain. On the other
hand, specialized ANNs can extract complex relationships in
latent representations of data. Such relationships are extracted
in the hidden layers of ANNS. Thus, latent representations
could be employed to find a bridge between domains, and
this bridge could be used to transfer knowledge from one
domain to another. Several approaches from the literature
have used autoencoders (AE) to carry out this task [14], [15].
Minimization between latent representations may be the bridge
between transferring samples from one domain to another.

In this work, we propose to transfer medical information
from the medical information mart for intensive care III
(MIMIC III) database [16], to a data set from a nephrology
unit. Information about in-hospital mortality from patients
with acute kidney injury (AKI) is transferred to support the
prediction of mortality in ESRD patients [7]. The transfer
mechanism used in this work is a reinterpretation of the
proposed work in [15]. In our work, we use a mapping matrix
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between domains and adjust the approach in [15] to transfer
information between domains. We change the learning task
and take it to a clinical setting. The main contributions of
our work are the following: (1) tackle the problem of data
imbalance through a solution based on TL and (2) improve
the learning capacity of the DL-based models and enhance
the prediction of mortality in ESRD patients by incorporating
knowledge from a massive data source.

In the next section, the background of the proposed method
is established. Section III presents the details of the proposed
approach. In Section IV, the approach is applied using the
clinical data sets, and Section V presents the remarks and
conclusion of this work.

II. BACKGROUND

This section contains the necessary components to support
the proposed method. Initially, the elements of TL, along with
the problem definition, are explained. Then, the knowledge
extraction mechanism from AEs is presented and finally, the
mechanism on which we have relied the proposed method is
described.

A. Problem definition

Given labelled data from the source and target domains,
Ds = {(xs,,ys,)}", and Dy = {(xz,,yr,)}2,. respec-
tively, where xg, € R9s'1 and x7, € R7! are the data and
ys, and yr, their labels. n; and ng refer to the total of samples
and dg and dr their features. We aim to improve the learning
task in Dr by increasing the number of samples and tackling
the data imbalance problem. This goal is carried out through
transferring knowledge from Dg to Dp. Knowledge transfer
is achieved through a transfer of samples from one domain
to another computing a feature mapping matrix G. G maps
latent representations from one domain to the other one. Thus,
a sample x% can be transferred to Dy through G(h%), where
h is the latent representation of x§. This increase in samples
and class balance may reinforce the learning task in Drp.

B. Autoencoders

An AE is a type of ANN that replicates input data x to
the output of the network x’ with a minimum error. This
mechanism allows extracting the most representative relation-
ships from the data in its latent space, the so-called code. AEs
have an encoding function, e (-), which is the portion of the
ANN that extracts knowledge in its code h = e (x), and the
decoding function, d (+), in charge of reconstructing the input,
x’ = d (h). The components of an AE can be appreciated in
Fig. 1.

To find the minimum error, the input of the AE is forward
propagated through the network. Each unit combines the
outputs of the previous layer linearly and its output is modified
by a non-linear function, in other words,
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Fig. 1. Structure of an autoencoder with three hidden layers.

with an ANN with L layers (I = 1,...,L). N; are the units
in layer . aé« represents the activation of the unit j in layer [
and wﬁ;l the weight that connect it with unit 1.

Once the propagations reach the output layer, a cost function
L is computed, the weights of the ANN are updated with the
gradient of the error through the network following the back-
propagation algorithm [17]. In this work mean squared error
is used as a lost function,

1

al 2
L= N (x; —x;)7, 2)

i=1

where x; represents a sample ¢ and NV is the total samples in
a dataset.

C. Hybrid heterogeneous transfer learning

The so-called Hybrid Heterogeneous Transfer Learning
(HHTL) proposed in [15], uses the labelled data from the
Dr = {(x1,,yr,)};2, to assign labels to the unlabelled data
from the Dg = {xg, },.*,. They solve this learning task in two
stages. In the first one, they train AEs with k (k =1,..., K)
layers in both domains. Then they extract latent representa-
tions of each hidden layer of the AEs, Hg1,...,Hg x and
Hr71,...,Hp k. Finally, they compute a mapping matrix of
latent representations Gy between the domains, minimizing
the objective:

min [Hs — GirHz|” + X |Gyl 3)
§

In the second stage they generate a new feature
space with the latent regrresentations of the target data
Zr = [Hp,...Hjg] , and train a classifier with
{(Zr,yr)}. Then use Gy to transfer samples X% from
Dg to the latent spaces of Dp, HY_, . With the la-
tent transferred representations, a feature space Zg_,p =

T T
[(Gng—ml) s (Gng—mk)
with the trained classifier they predict over Zg_,7 the labels
for Dg samples, where S — T refers to the transfer from Dg
to D.

is created. Finally,
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Fig. 2. Scheme of proposed method for transfer of samples between domains and the support of a learning task in the target domain.

ITII. PROPOSED METHOD

In this work, we propose to apply a TL approach to
increase the number of samples in Dy using Dg. This
mechanism is carried out with the twofold purpose of tackling
data imbalance and improving the predictive capacity of DL
models with the augmented dataset in D7. Both domains, Dg
and Dy, contain labelled data. Fig. 2 presents an overview
of the proposed method. The approach is divided into two
stages. In the first one, unlike HHTL, we have labelled data.
Thus, inspired by HHTL, we compute G using the codes
from trained AEs in each domain. In these codes, the latent
representations of the input data of each domain are extracted.
In the second stage, G is used to transfer codes, HY, produced
by data X% in Dg, to codes in Dr. Then, the decoder function
in D7 reconstructs the transferred codes in such domain. Thus,
the samples in Dr are increased. As mentioned previously,
this last step allows to improve the capacity of the DL-based
learning model and tackle the imbalance issue. The steps to
perform the proposed method are presented in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this section, the performance of the proposed approach is
evaluated in a clinical domain. Both domains are related to the
mortality of patients with kidney diseases. The task to support
in the target domain is the prediction of mortality at 1, 2, 3
and 6 months. Details about the used datasets, the experiments
and the results are presented in the rest of this section. All the
reported experiments were repeated 10 times using 5-folds for
cross-validation. Thus, the test data of each fold is only used
when evaluating the mortality prediction models trained with
the augmented data.

A. Datasets

Information for the target domain is part of a previous
study of prediction of mortality in ESRD patients [7]. The
study cohort contains 8229 samples with 53 variables from the
monthly follow-up of 261 patients during the evolution of their

Algorithm 1: Proposed method
Input: Data from both domains, A = 0.001:
Dg = {(Xsi,ysi)}?:ll, Dr = {(XTHyTi) ?:21
1 Train AEs with X ¢ and X 7. Extract encoder (e) and
decoder (d) functions from both domains, and the
latent representations-codes H:
Hg = es(Xs), X5 =ds (Hs)
HT = €erT (XT), X/T = dT (HT);
2 Learn heterogeneous feature mapping G:
min |[Hs — GHr|* + A [ G||*:
3 Augment samples in Dy with samples from Dg:
X7 =G X5
Note: S — T means the transfer from Dg to Dr.
Xp=Xr Xi.rlyr=[yr s
4 Train a classifier f with {(X%,y%)}
Output: Classifier f

disease until the deceased event. The dataset is a mixture of
categorical and continuous variables that include information
about demographics, laboratory tests, diagnoses and variables
measured during the haemodialysis sessions.

The dataset for the source domain has been extracted from
MIMIC-III database [16]. From this massive database, those
patients with acute kidney injury (AKI) were filtered based
on the kidney disease improving global outcomes (KDIGO)
clinical practice guideline [18]. The total cohort contains 4152
samples and 23 features. These features are also a mixture
of categorical and continuous measurements of the health
condition of patients in intensive care units (ICU). Their
follow-up includes demographics, diagnoses, laboratory tests,
physiological measurements during the ICU stay and the in-
hospital mortality label.

In terms of data imbalance, AKI contains 1565 samples
from patients who deceased in ICU. For ESRD data, the
label varies based on the mortality range to be predicted.
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Information on how this label is computed can be found in
the previous work [7]. Table. I shows the information on the
class imbalance in ESRD.

TABLE I
IMBALANCE OF SAMPLES FOR THE PREDICTION OF MORTALITY IN
PATIENTS IN ESRD. CLASS 0 AND CLASS 1 REFER TO SAMPLES IN ALIVE
AND DECEASED CLASSES, RESPECTIVELY.

Mortality Class 0 Class 1  Imbalance (%)
1 7734 495 93.6
2 7488 741 90.1
3 7251 978 86.5
6 6632 1597 75.9

B. AEs training and TL mechanism

Initially, an AE is trained in each domain. From both AEs,
their latent representations are extracted. Two AEs with two
hidden layers were trained for both datasets. The hyperbolic
tangent (Tanh) activation function was used for the hidden
layers and the sigmoid for the output layer in AKI. For the
ESRD dataset, rectified linear unit (ReLU) activation function
for hidden layers and Sigmoid at the output layer were used.
For both AEs, a dropout of 0.1, and batch normalization
were applied in the hidden layers of the networks to avoid
overfitting. Once the AEs are trained, the mapping matrix G is
generated using the latent representations from both domains.
Then, the latent representation of AKI data is transferred
to the latent space of the ESRD domain using G. Finally,
transformation is reconstructed using the decoding function of
the trained AE in ESRD.

C. Experiments

The performance of the proposed method is evaluated on the
learning task in ESRD. The area under the receiver operating
characteristic (AUROC) curve is measured. AUROC relates
the sensitivity and specificity of a classifier. Its values are
between O and 1, with 1 being the perfect classifier and 0.5
a random one. The baseline performance and classifiers used
in this work are based on the ones implemented in [7]. Three
experiments have been defined to determine the performance
of the proposed method.

1) Tunning latent representation dimensions: In the first ex-
periment, the dimensions of the latent representations in both
domains are evaluated. Thus, the combination of dimensions
that presents the best overall performance for the prediction
task is empirically found. In Fig. 3, S_x and T"_x refer to the
dimensions of the codes in AKI and in ESRD, respectively.
It can be appreciated that most of the combinations present a
higher performance than the baseline one. However, the best
combination of dimensions in the codes is 30 and 80 units in
AKI and ESRD, respectively.

2) Increasing samples in ESRD: This experiment evaluates
how the increase of samples in the training set affects the
predictive models of mortality in ESRD. For this experiment,
three possible scenarios were defined. In the first scenario,
the data imbalance in ESRD is intentionally increased. Thus,
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Fig. 3. Mortality prediction varying the dimension of latent representations
in source (S) and target (T) domain.

only AKI Class 0 samples are transferred to the ESRD training
set. This transfer is carried out to evaluate whether there is a
negative effect linked to the increase in data imbalance. In
the second scenario, the training set samples are increases,
but only those that belong to AKI Class 1 are transferred. In
this case, the aim is to balance the imbalanced class. Finally,
both cases are combined in a third scenario. Therefore, we
seek to evaluate both the effect of the increase in samples
and the reduction of the data imbalance in the predictive
models. Table. I shows how the data imbalance varies for
each scenario.

TABLE 11
IMBALANCE IN ESRD GENERATED BY INCREASING TRAINING SAMPLES
IN ESRD FROM AKI. SCENARIO 1, 2 AND 3 REFER TO THE TRANSFER OF
SAMPLES FROM THE CLASS 0, 1 AND COMBINING BOTH CLASSES,
RESPECTIVELY.

Mortality Generated data imbalance (%)

Scenario 1  Scenario 2  Scenario 3
1 95.2 73.4 80.0
2 92.6 69.2 77.1
3 90.1 74.9 74.2
6 82.7 52.3 65.7

In Fig. 4 it can be appreciated that increasing samples in
the training set of the ESRD data does not imply, in any of
the scenarios, a deterioration in the predictive models. On
the other hand, when the number of samples is increased,
considering the imbalance issue, the learning models present
a better predictive capacity.

3) Comparison with CCA-SMOTE: Finally, the proposed
method is compared with the so-called Constructive Covering
Algorithm (CCA) [9]. A technique that improves the widely
used Synthetic Minority Oversampling Technique (SMOTE)
[8], incorporating a mechanism based on ANN to delete the
hard to learn samples. The imbalance of training samples for
CCA-SMOTE is adjusted following the third scenario in Table.
II for a fair comparison. It can be appreciated in Fig. 5 that for
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Fig. 4. Imbalance performance by increasing the samples in individual and
both classes.
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Fig. 5. Comparison of proposed method and CCA-SMOTE.

most of the predictors, CCA-SMOTE performs better than the
baseline. However, the proposed method outperforms CCA-
SMOTE for all the predictive models.

V. CONCLUSION

In this paper, an approach to support the predictive learning
task of mortality in ESRD patients based on TL was presented.
The TL mechanism made it possible to reduce the imbalance
problem, and with the increase in samples, the DL-based
models exhibited a better predictive capacity than previous
predictive models. The experiments showed that the increase
of samples in the target domain positively influences predictive
performance. Moreover, when this increase of samples reduces
the data imbalance, the improvement in predictions becomes
more significant. Finally, as data imbalance is an inherent
problem in many chronic pathologies, we recommend applying
the proposed approach to transfer massive clinical data to data
from relatively small units and support learning tasks in such
domains.
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