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Abstract—Drowsiness detection is still an open issue, especially
when detection is based on physiological signals. In this sense,
light non-invasive modalities such as electroencephalography
(EEG) are usually considered. EEG data provides informations
about the physiological brain state, directly linked to the drowsy
state. Electrocardigrams (ECG) signals can also be considered
to involve informations related to the heart state. In this study,
we propose a method for drowsiness detection using joint EEG
and ECG data. The proposed method is based on a deep
learning architecture involving convolutional neural networks
(CNN) and recurrent neural networks (RNN). High efficiency
level is obtained with accuracy scores up to 97% on validation
set. We also demonstrate that a modification of the proposed
architecture by adding autoencoders helps to compensate the
performance drop when analysing subjects whose data is not
presented during the learning step.

I. INTRODUCTION

The drowsiness state [1] can be defined as an intermediate
state between awake and sleep. Detecting this state is a real
and open challenge since high vehicle accident rates are due
to drowsiness. This state particularly involves lack of concen-
tration, partial eye closure and relaxation. Generally speaking,
drowsiness is linked to reaction heaviness, which means that
the brain is altered by this state. In this sense, several studies
have investigated the use of biomedical signals to detect
the drowsiness state [2–5]. Specifically, electroencephalog-
raphy (EEG), Electrocardiography (ECG), electromyography
(EMG), and electrooculography (EOG) data have been ex-
plored for this detection. However, to our knowledge, all these
modalities have been analysed separately.
Analysing the spectral content of EEG signals allows different
waves of interest to be identified. For example, the Alpha wave
(8-13Hz) is linked to relaxation and creativity, while the Theta
(4-8Hz) and Beta (13-25Hz) waves indicate the concentration
and alertness levels [6, 7], respectively. Regarding the analysis
of ECG data, it has been reported that the Heart Rate Variation
(HRV) helps to characterize drowsiness [8].
In this paper, we investigate the joint analysis of EEG and ECG
data by proposing a deep learning architecture based on both
convolutional and recurrent neural networks. Such a combina-
tion is expected to improve drowsiness state characterization
by providing complementary informations from the ECG and
EEG modalities. However, combining different signals raises
several problems such as the temporal resolution heterogeneity
and the relevance of the used features.

Due to the difficulty to define a relevant analytical model for
the drowsy state, machine learning tools have been investigated
in the literature. In this sense, support vector machines (SVM)
have been proposed to analyse EEG signals [9, 10].
With the emergence of deep CNN, many studies have been
conducted by proposing different architectures for EEG anal-
ysis [11–13]. In [11], a deep CNN with residual learning has
been proposed for driver fatigue detection. In [12], the authors
proposed a drowsiness detection method analysing differential
entropy with a deep CNN.
Regarding the use of ECG data, a feature extraction step
is often used. In [14], heart rate and frequency properties
are extracted in a feature vector for both SVM and random
forest classifiers. In [15], the same temporal and frequency
descriptors are extracted for both EEG and ECG data to feed
an SVM classifier. The authors highlight the benefits of adding
the ECG signal to the analysis since its use increases the
accuracy from 76.36% to 80.9%.
In the proposed study, EEG and ECG are combined us-
ing implicit features by resorting to deep neural networks.
Specifically, an architecture combining a CNN with two RNN
is proposed. The input data is handled differently by each
network resulting in two levels of information fusion for the
final classification (drowsiness detection). Our motivation for
using a deep neural network is that due to the complexity of
the drowsy state, extracting features directly from the EEG
and ECG signals has its own limits, which will be confirmed
by our simulation.
The rest of the paper is organized as follows. Section II
describes the used data for drowsiness detection. The deep
learning architecture proposed for data analysis is detailed in
Section III. Experimental validation is presented in Section IV,
while conclusions and perspectives are drawn in Section V.

II. DATA

A. MIT-BIH dataset

The dataset used for this study is extracted from the MIT-
BIH Polysomnographic database1, which involves a collection
of recordings of multiple physiological signals acquired during
sleep including EEG and ECG recordings [16]. Subjects
were monitored in the Boston’s Beth Israel Hospital Sleep
Laboratory for evaluation of chronic obstructive sleep apnea

1https://physionet.org/content/slpdb/1.0.0/
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syndrome. The database contains over 80 hours of polysomno-
graphic recordings. Only ECG and EEG data are considered
in this study, both sampled at 250 Hz. The ECG signal has
been annotated beat-by-beat with sleep stage annotation every
30 seconds: 0 for awake, 1 for the first sleep stage, 2 for the
second sleep stage until ”REM” for the final sleep stage. As a
drowsy driver state lies in transition between awake and sleep
states, the goal will be to discriminate the the two first states
”0” and ”1”, resulting in a binary classification.

B. Windowing

Online drowsiness detection requires analysing a recorded
data flux. This flux has to be divided into frames with enough
samples so that the analysis is consistent from a statistical
point of view.
Denote as x1 and x2 the vectors related to EEG and ECG
signals, respectively. Let us also assume that the recorded data
have a unique duration T . Since EEG and ECG data may be
acquired with different sampling rates, the windowig process
has to provide frames with two channels of different sizes.
The ith frame fi is made up of EEG and ECG signal vectors
x1i ∈ Rs1 and x2i ∈ Rs2 concatenated to fi = {x1

i , x2i }.
For our data, as there is one annotation of the sleep stage every
30 seconds, EEG and ECG recordings are split into frames
with duration d = 30 seconds in order to ensure annotation
consistency, with an overlap of 5 seconds. Moreover, frame
overlapping is allowed in order to adapt the proposed model
to online drowsiness detection.

C. Unbalanced data

To bypass the unbalanced dataset (more awakeness than
sleep stages), we resort to data augmentation. Indeed, several
works have integrated data augmentation techniques [17, 18]
in the training step in order to avoid over-fitting and improve
the performance of the networks in terms of classification
accuracy. We use the Random Over-sampling technique [19]:
random data duplication is performed from the minority class.

III. DETECTION MODEL

The proposed model for joint EEG and ECG data analysis
relies on two different analyses, both performed using artificial
neural networks: frame and temporal analyses.

A. Frame analysis

This analysis is designed to characterize the drowsy state
using data frames passed through a CNN. Each frame fi =
{x1

i , x2i } is analysed independently from the others. However,
x1i and x2i are analysed simultaneously within each frame using
a CNN with two channels. Convolution with 1D filters is
performed over each channel. Inspired by classics CNN [20],
the used CNN is made up of a succession of 6 layers, each
of them involving 1 Convolution, 1 MaxPooling and 1 Batch-
normalization layer. Finally, a Dropout and a GlobalAverage-
Pooling layers are applied.

B. Temporal analysis

In addition to the frame analysis, drowsiness is supposed to
be a state that occurs after a progressive attention decrease. As
a consequence, analysing segments resulting from successive
frames seems to be relevant. Each frame fi is split into
n blocks of dimension m. A short-term Fourier transform
(STFT) is applied to each frame signal. Only the positive
spectrum part is retained due to the symmetry property.
According to [21], build a time-frequency representation
simplifies the learning task and in their case increases
performances. As will be illustrated in Section IV, this
representation allows to reach high accuracy rates.
Finally, a recurrent neural network (RNN) is used to
characterize the temporal evolution of different frame. In
order to capture the memory effect between successive frames,
a Long short-term memory (LSTM) network is used [22].
LSTMs have been widely used in the literature especially for
their ability to overcome the vanishing gradient limitation by
adding weights managing the memory. Inspired by [23], the
LSTM architecture is made up with two layers of n LSTM
cells. The complexity of this architecture depends on two
parameters: the output y of the LSTM network and the input
of the cells from the first layer m. It is worth noting that
the complexity of the network decreases as long as n increases.

C. Proposed architecture

Based on the frame and temporal analyses, the proposed
architecture is illustrated in Fig. 1. This architecture is based
on three parallel networks. The first network is the one ensur-
ing the frame analysis on both EEG and ECG channels. After
the windowing step, the two-channels data are introduced to a
CNN. An additional 10-neurons layer is applied (the number
of neurons is determined by cross-validation).
Two other parallel networks are used to perform the temporal
analysis. EEG and ECG data are processed separately using
an LSTM with additional 5-neurons output layer, determined
too with cross-validation. The outputs of the three networks
are presented to a dense layer leading to the final binary
classification.

IV. RESULTS

A. Validationn with a frame leave-p-out strategy

In the first experiments, we asses the performance of the
proposed architecture for drowsy and awake frames classifi-
cation. EEG and ECG recordings from the database described
in Section II-A are processed as indicated in Section II.
Frames from the different subjects are mixed and split into
two groups: 70% for learning and 30 % for testing. With
a final accuracy score of 97%, Fig. 2 displays the accuracy
and loss curves with respect to (w.r.t.) the number of epochs.
The curves confirm the good convergence properties after
approximately 300 epochs using the ”Adam” optimizer. Note
that the similarity between the values of the learning and
validation accuracy and the loss function confirm the good
generalization of the proposed architecture. This is partly
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Fig. 1. Proposed architecture for drowsiness detection.

due to the use of a high dropout level. Based on multiple
experimental settings, the best configuration was obtained with
a dropout of 0.85 for the convolutional part and 0.5 before the
final classification. The obtained accuracy rate is higher that
the one reported in [10] (93%) where the authors showed that
their approach outperforms other state-of-the-art methods.

Fig. 2. Accuracy and loss curves w.r.t. epochs.

Fig. 3 displays the confusion matrix where the ”0” label
corresponds to the drowsy state. From this matrix, sensitivity
(the ratio of True Positive to the number of element of the
considered class) and specificity (the ratio of True Negative to
the number of element of the other class) scores considering
Drowsy class can be calculated, and are respectively 97.3%
and 96.6%.

Fig. 3. Confusion Matrix.

B. Validationn with a subject leave-p-out strategy

In this experiment, drowsiness detection is performed using
the architecture in Fig. 1. However, the dataset has first been
split into two groups: 10 subjects have been dedicated for
the learning phase, while 3 subjects have been kept for test.
During the learning phase, no frames from the second group
are presented to the model. Consequently, the model cannot
learn properties linked to the subject specificities.
Frame windowing is then performed within each group.
The obtained results show an accuracy decrease to 70%, which
means that intrinsic information related to a given subject plays
an important role in the drowsy state detection. It is worth
noting that in [24] the authors report a sensitivity decrease
from 80.3% to 41.4% in this case. For the proposed method, a
sensitivity decrease from 97.3% to 82% is reported (see Table
I). However, the decrease in specificity is more significant
(from 96.6% to 67%), which means that a higher false alarm
rate is expected if no frames corresponding to the target subject
are provided for the learning phase.
In the following Section we develop an improvement of the
proposed method to overcome this limitation related to the
training conditions.
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C. Autoencoded detection

As discussed in the previous Section, it has been reported
in the literature that when testing classifiers on data from
subjects not present in the learning database, a sensitivity drop
is always observed [24, 25]. In order to limit overfitting with
intrinsic features related to the subject from EEG and ECG
data, we propose the use of autoencoders before feeding the
data to our classifier. Autoencoders have been used in the
literature [26] as unsupervised deep learning models where a
first group of weights is trained to encode the input data into a
representation vector of lower dimension, and a second group
is trained to decode this new representation and reconstruct
the original input. After the encoding/decoding steps, our
expectation is to make the model forget intrinsic features of the
subject. By reducing the dimensionality, autoencoders provide
a better generalization for the input data. Two autoencoders
handling EEG and ECG data are therefore introduced in the
proposed architecture as illustrated in Fig. 4. Both autoen-
coders have the same architecture: three layers of Convolution-
MaxPooling-BatchNormalization to encode the signal into a
dimension of 625 features, and three symmetrics Convolution-
UpSampling-BatchNormalization layers to decode the signal.
Once these two autoencoders have been trained, the ECG and
EEG data are first encoded into the smaller dimension and
then fed to the neural networks for the frame and temporal
analyses.

The proposed model is trained as for the experiment in
Section IV-B. The obtained accuracy and loss curves are
displayed in Fig. 5 with a best accuracy score equal to 84%.

This result confirms the importance of the autoencoding
step, and shows that we improved classification performance
(in terms of accuracy score) compared to [24] (direct compar-
ison is not possible due to data availability issues).
To summarize the quantitative evaluation of the proposed ar-
chitectures performance, Table I reports sensitivity and speci-
ficity scores for the proposed architectures with and without
autoencoders, and this for both frame and subject leave-p-out
strategies. According to the reported scores, a sensitivity and
specificity drop is reported with the autoencoded architecture
for the frame leave-p-out strategy, as expected. Indeed, the
autoencoders effect is useless in this case due to the learning
procedure where the model has the possibility to learn from the
target subjects. As regards the subject leave-p-out detection,
the reported gain in both sensitivity and specificity clearly
shows the effectiveness of the proposed architecture with
scores higher than those reported in the recent literature (for
example [25] with accuracy score of 76% with a leave-one-out
strategy).
On the other hand, we can notice that the sensitivity score
is stable with and without autoencoding if the subject leave-
p-out strategy is considered. However, autoencoding clearly
helps improving specificity performance.

V. CONCLUSION

This paper studied a new method for drowsiness detection
using EEG and ECG data jointly. The proposed method is

TABLE I
SENSITIVITY AND SPECIFICITY SCORES WITH AND WITHOUT

AUTOENCODERS, FOR BOTH FRAME AND SUBJECT LEAVE-P-OUT
STRATEGIES.

Without autoencoder With autoencoder

Sensitivity Frame p-out 97.3% 91.6%
Subj. p-out 82% 84%

Specificity Frame p-out 96.6% 90.5
Subj. p-out 67% 81%

based on a combination of convolutional and recurrent neural
networks. A very accurate detection was obtained, especially
when the learning step involves frames from the target sub-
jects. When learning from the target subject is impossible,
the accuracy of the algorithm drops to 70%. To overcome this
performance loss, an autoencoded version is proposed to reach
an accuracy level of 83.38%. The proposed final architecture
is therefore very efficient, enjoys high generalization level, and
can be used for applications where calibration using data from
the target subject is impossible.
Future work will focus on investigating the use of fractal
features to improve the performance of the proposed model,
as well as large scale validation with data collected using
connected EEG and ECG devices.
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