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Abstract—The sleep stage scoring allows the analysis and
characterization of several sleep disorders. Since manual labeling
is a tedious task subject to human errors, many proposals
to perform this classification automatically have been made.
Methods based on electroencephalogram (EEG) are the gold-
standard, achieving the best results. However, they have complex
instrumentation, which is a disadvantage for screening methods.
For this reason, we propose an automatic sleep staging method
using heart rate (HR) and peripheral oxygen saturation (SpO2)
signals obtained from pulse oximeter, an ideal device for screening
due to its low cost and simplicity. This method consists of
two stacked layers of bidirectional gated recurrent units and
a softmax layer to classify the output according to the American
Academy of Sleep Medicine. To evaluate the performance, we
use the Sleep Heart Health Study dataset, using 2500 HR and
SpO2 signals corresponding to different patients for training,
1250 for validation, and 1250 for testing the models. The obtained
results in the testing subset were 73.2% for accuracy and 0.63
for the Cohen’s Kappa coefficient. This performance shows that
our model is able to outperform alternative methods that use
cardiac signals from both pulse oximeter and electrocardiogram,
but there is still an important gap to achieve the performances
obtained using EEG.

Index Terms—pulse oximeter, heart rate, recurrent neural
networks, automatic sleep staging

I. INTRODUCTION

The gold standard to assess sleep disorders is polysomnog-
raphy (PSG), which consists of the recording of several
biological signals including electroencephalography (EEG),
electrooculography (EOG), oxygen saturation, chin and leg
electromyography (EMG), electrocardiography (ECG), breath-
ing effort, among others [1], [2]. The PSG is expensive and
its availability is scarce. The visual data interpretation of the
PSG signals is the most common approach to diagnose, but
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the scoring is a time-consuming process and depends on the
expert’s experience. Further, it has a lot of variability among
different professionals [3].

There are two available standards that represent a guideline
for diagnosing sleep pathologies, the traditional Rechtschaffen
and Kales (R&K) [4] and, since 2007, the later standard pub-
lished by the American Academy of Sleep Medicine (AASM)
[2]. According to the R&K standard, the PSG recordings
are split into consecutive 30-seconds-long segments and each
segment is classified in wakefulness (W), two stages of light
sleep (N1 and N2), two of deep sleep (N3 and N4), and rapid
eye movement sleep (REM), which are differentiated based on
characteristic waveforms that can be found in EEG, EOG and
EMG [4], [5]. The AASM modifies the R&K rules with the
aim of increasing the inter-rater reliability of sleep staging,
unifying N3 and N4 in a single stage, called simply N3 or
slow-wave sleep.

To overcome the disadvantages of visual inspection, numer-
ous approaches for automatic sleep staging have been devel-
oped. Many studies have shown that the EEG signal is almost
sufficient for obtaining a reliable scoring [6]. In addition to
this, due to the complexity of the PSG studies, there is a
generalized underdiagnosis of several sleep pathologies [7],
[8]. Hence, the development of portable screening methods to
assess sleep studies at home is becoming particularly relevant
in the research community.

Pulse oximeter is an ideal choice for screening due to its
low cost, accessibility, and simplicity [9]. This device has
proven to be useful for the screening of obstructive sleep
apnea/hypopnea syndrome [10], one of the most prevalent
sleep disorders [11]. In addition, this technology can easily be
adapted to wearable devices and be used for personal health
monitoring. There are many commercial devices that provide
sleep measures, but not many studies have validated these
measures [12].

The main hypothesis of this work is that information
about sleep stages can be inferred by means of the adequate
processing of cardiac-related signals. The heart rate (HR)
signal is affected by the regulation of the autonomic nervous
(sympathetic and parasympathetic balance), decreasing during
sleep to adapt to reduced metabolism. The average HR falls
steadily from wake to deep sleep stages, increasing slightly
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during REM [5]. Further, HR presents greater variability
during wakefulness and REM. We expect that the proposed
algorithm will be able to exploit these changes to perform the
automatic sleep stage classification.

This paper is a preliminary study to classify sleep stages
using signals provided by the pulse oximeter, namely HR
estimated from photoplethysmography and peripheral oxygen
saturation (SpO2). These developments are derived from the
modification of a previous work in which the sleep stages
were classified as awake and sleep [13]. The classification is
performed by applying recurrent neural networks (RNNs) to
the raw signals. The RNNs are able to store information about
the entire sequence in the state vectors to learn the temporal
dependencies of the internal structure of the sleep [14]. We
suppose that the network will be able to discriminate the sleep
stages based on the changes in the HR dynamic caused by the
different regulation of the autonomic nervous system during
sleep [5].

II. MATERIALS AND METHODS

The automatic sleep staging is performed using a specific
type of RNN called gated recurrent networks (GRU) [15],
which is a simplified variant of the well-known long short-
term memories (LSTM) [16]. The proposed approach consists
of a simple preprocessing of the raw data with the aim of
removing invalid data and standardize the inputs to the net-
work. Then, two stacked layers of bidirectional GRUs receive
the input preprocessed data to learn the transition rules of the
sleep stages exploiting both past and future information [17].
Finally, a 5-softmax layer is used to classify each segment
into five classes according to the AASM rules. An overview
of these network architecture is shown in Fig. 1.

In this section we will explain briefly the used dataset, the
different parts of the designed architecture, and the performed
post-processing.

A. Dataset

In this work, we used 5000 recordings of HR and SpO2

corresponding to the Sleep Heart Health Study (SHHS) dataset
[18]. The SHHS dataset contains PSG studies acquired auto-
matically at the patient’s home. Full details can be found in
[19].

The HR signal has a sampling rate of 1 Hz and precision of
3 beats per minute. Further, the oximeter provides a quality-
related signal with information about the status of the sensor
connection, the value of which is 0 for a good connection and
1 for a defective connection.

Additionally, we used the sleep staging included in the
SHHS as the target of the system. These sleep stages are
labeled in consecutive 30-seconds-long segments and they
were processed to be in accordance with the AASM rules.

1) Input data preprocessing : We split the dataset into three
subsets: 2500 subjects were used for training the network,
while two subsets of 1250 subjects were used for validating
and testing the trained models.

Preprocessing

Remove
invalid data

xi = xi−µ̄train

σtrain

256/256 bi - GRU

256/256 bi - GRU

5 - softmax layer

Neural Network

Input data:

HR

SpO2

N1

Wake

Output classification:

2 x L

1 x L

1x L
30

Majority vote

N3

N2

REM

Figure 1. An scheme of the best architecture consisting of two stacked layers
of bidirectional GRU, a softmax layer to classify the outputs of the GRUs,
and finally a majority vote performed to obtain the final classification.

To remove invalid data due to defective sensor contact,
we use the quality-related signal to mask the signals. Once
identified the invalid data, we interpolate linearly between the
previous and posterior valid data.

In order to reduce the inter-subject variability, we stan-
dardize the input data using the global mean and standard
deviation of the training dataset. Then, these values were used
to standardize the training, validation, and testing datasets.

2) Recurrent neural networks: RNNs are a family of neural
networks that have proven to be very useful for processing
sequential data. They can store in an "internal state" the
information of the history of the signals. In this way, the
outputs of the network do not depend only on the current input,
but they also depend on the previous inputs and outputs. This
is accomplished using recurrent connections that feedback the
outputs into the inputs [14]. In classical RNNs, this theoretical
persistence of the information is not easy to achieve in practice
because the backpropagated gradients used to train the network
tend to vanish rapidly [16].

To overcome this limitation, called vanishing gradient, the
LSTMs networks were designed. In these networks, the infor-
mation flow is controlled by structures called gates that allow
learning the long-term dependencies introducing a persistent
internal state present in each LSTM unit.

Many variations of the LSTM have been proposed since
their emergence, but the GRUs [15] are a simplified version
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of the LSTM that have become very popular. For time step t
and GRU-cell i, the follow equations are used:
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where u is the “update” gate, r is the “reset” gate, and h
(t)
i is

the state vector of the i-th GRU cell. W(·),i and b(·),i are the
weights and bias, x represents the input to the network, and
σ represents a sigmoid function [20]. Finally, the operator ◦
represents an element-wise product.

The update gate controls by means of the sigmoid function
how much information from the last state vector h

(t−1)
i and

how much information from the new candidate of state vector
h̃
(t)
i are used for the new state vector h

(t)
i . The reset gate

controls which parts of the current state are used to compute
the next state [20].

As can be seen from (1), the state vector stores only
information from past and present inputs, i.e. it has a causal
behavior. When the processing is off-line, we prefer to be able
to extract information not only from the past but also from the
future, which allows a better understanding of the context and
can eliminate ambiguities. Schuster and Paliwal [17] created
a bidirectional RNN combining two RNNs, one that moves
forward through time and the other that moves backward.

In our work, we have used GRU-based architectures instead
of LSTM since they make less use of memory. Moreover, since
the processing in our case is done off-line, bidirectional GRUs
were considered.

B. Softmax layer

With the aim of classifying the outputs of the GRU, a 5-
softmax layer is applied by:

y = relu(Wx+ b) (2)

where W and b are the weights and bias, respectively, and
x is the input to this layer, that is the output of the second
bidirectional GRU. We use a rectified linear unit activation
relu(x) = max(0, x). This output vector y is mapped to a class
probability with a softmax function. The used loss function is
cross-entropy and the optimization algorithm is Adam [21].

The approach presented in this paper performs a sleep stage
classification sample to sample, that is, with a resolution of
1 second. According to AASM, which recommends labeling
the sleep stages every 30 seconds, we conducted a majority
vote for non-overlapping segments of 30 seconds. The reported
results correspond to this vote.

III. RESULTS AND DISCUSSION

We evaluated many variants of network architectures,
changing the number of GRUs stacked and the number of

hidden layer sizes in the bidirectional-GRUs. From these
experiments, the architecture with the best performance was
two stacked bidirectional-GRUs with 256 hidden units.

As we previously stated, we have used the Adam optimizer.
The parameters of which are the learning rate α and the
exponential decay rates for the first moment and second
moment, β1 and β2 respectively. These parameters were set to
10−4, 0.9, and 0.99 respectively.

We trained the model using the training dataset during 120
epochs. After each epoch, the model was evaluated using
the validation dataset. To avoid over-fitting, we used early
stopping, selecting the model with the best accuracy in the
validation dataset.

A. Sleep staging performance

The performance of the designed network was evaluated in
the test dataset, composed of 1250 signals corresponding to
unseen patients.

Sleep stages can be classified with different degrees of
discrimination. Thus, methods designed for screening have a
tendency to group several sleep stages in order to perform
a simpler classification. With the aim of favor the methods
comparison, we present several tables with the obtained results
considering different sleep stage groupings and the main
algorithms of the state-of-the-art which performed the same
grouping. It should be noted that, as different signals and
datasets were used, direct comparisons between results cannot
be performed.

Table I presents the performance classifying sleep stages
according to the AASM, namely awake, N1, N2, N3, and
REM. As far as we know, there are no screening algorithms
that classify sleep stages according to the AASM. For this
reason, it was necessary to compare against methods that
use EEG. Supratak et al. [22] used an architecture based on
convolutional neural networks (CNN, to automatically learn
features from EEG signals) and RNN (to learn the sleep stage
transition rules), the performance of which was evaluated in
two different datasets. We report both results in order to show
the variability of the results for the same algorithm. Mousavi et
al. [23] developed a method based on CNN and RNN using a
single-EEG channel. Unlike Supratak, they used an encoder-
decoder architecture and attention mechanisms. To the best
of our knowledge, that work obtains the best performance in
automatic sleep staging using a single-EEG channel. While
we cannot yet compete with these results, we must say that
EEG signals have complex instrumentation. These results give
us an idea of the upper bound that we could reach, and allow
us to compare against the gold-standard.

Table II summarized the state-of-the-art methods grouping
N1 and N2. We compared our obtained results with Beattie
et al. [24], which used photoplethysmography (PPG) and
accelerometer signals. In that work, the authors considered
4 classes. The used database was composed of 60 participants
that were self-reported normal sleepers. We can not make a
direct comparison because they have additional information.
They used the PPG signal (not only the HR calculated from
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Table I
COMPARISON WITH THE LITERATURE (AASM RULES)

Method Input N Acc AccW AccN1 AccN2 AccN3 AccREM κ
256-biGRU HR+SpO2 5000 73.2 85.6 0 75.7 60.8 75.4 0.63

CNN+RNN [22] EEG 62 86.2 87.3 59.8 90.3 81.5 89.3 0.80
CNN+RNN [22] EEG 20 82.0 84.7 46.6 85.9 84.8 82.4 0.76

CNN + RNN [23] EEG 61 84.3 89.2 52.2 86.8 85.1 85.0 0.79

it), in addition to the accelerometer signals. In spite of this, it
can be seen that our algorithm obtains a better performance
than that work, even when we are discriminating between N1
and N2. The best accuracy obtained in [24] was 68.7%.

Finally, table III shows the performance classifying sleep
stages as W, REM, and non-REM (grouping N1, N2, and
N3). Here we can compare with Yücelbaş et al. [25] and
Xiao et al. [26], both using ECG. Yücelbaş used two different
datasets, which contain 10 and 18 signals corresponding to
different patients, respectively. The results were reported for
healthy subjects and patients (people suffering from sleep
disease). In the second dataset, the reported data do not allow
to compare all performance measures. The authors performed
10-fold cross-validation, but segments corresponding to the
same patient were used for training and testing. Ideally, signals
from patients that are used for training should not be used for
testing. The work by Xiao et al. [26] extracted 41 features
from ECG and used random forests to classify. The authors
only analyzed data labeled with “stationary”, that is they
classified 5-minute windows corresponding to a single class.
The accuracy obtained was 75.6%. The authors performed
two different schemes, subject-specific classifier (training and
testing set with the same record) and subject independent
classifier (training and testing with independent records). To
be fair, we only compared our result with the best result in
the independent scheme obtained by Xiao et al [26].

Based on the obtained results, we can see that acceptable
performance is achieved. The most noticeable is the inability
of the algorithm to classify N1, a very minor stage in relation
to the rest (approximately 3% of the total-register-time).

Fig. 2 shows three hypnograms obtained using the designed
network: the first hypnogram represents an average error, and
the second and the third hypnograms obtained a performance
higher and lower than the average, respectively.

IV. CONCLUSION

In this paper, we proposed an RNN-based model for clas-
sifying sleep stages using raw HR and SpO2 obtained from a
pulse oximeter. Our model uses bidirectional-GRUs to learn
the transition rules among the sleep stages. It was shown
that the HR and SpO2 dynamic is useful to perform sleep
staging. As far as we know, with exception of EEG, this
research shows better results than the others research in the
field that used signals that were harder to register in the same
field. Further, this approach can be easily adapted to screening
devices of sleep pathologies, wearable devices for personal
health monitoring, among others. The size of the dataset used

is bigger than in other related works. As future work, we will
improve this network and try other architectures with the aim
to obtain results comparable with the EEG.
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