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Abstract—The auditory attention decoding (AAD) approach
was proposed to determine the identity of the attended talker in a
multi-talker scenario by analyzing electroencephalography (EEG)
data. Although the linear model-based method has been widely
used in AAD, the linear assumption was considered oversimplified
and the decoding accuracy remained lower for shorter decoding
windows. Recently, nonlinear models based on deep neural
networks (DNN) have been proposed to solve this problem.
However, these models did not fully utilize both the spatial
and temporal features of EEG, and the interpretability of DNN
models was rarely investigated. In this paper, we proposed novel
convolutional recurrent neural network (CRNN) based regression
model and classification model, and compared them with both
the linear model and the state-of-the-art DNN models. Results
showed that, our proposed CRNN-based classification model
outperformed others for shorter decoding windows (around 90%
for 2 s and 5 s). Although worse than classification models,
the decoding accuracy of the proposed CRNN-based regression
model was about 5% greater than other regression models.
The interpretability of DNN models was also investigated by
visualizing layers’ weight.

Index Terms—Auditory attention decoding, EEG, deep neural
network, CRNN

I. INTRODUCTION

In a complex auditory scene where multiple talkers are
talking simultaneously, a normal-hearing (NH) listener is usu-
ally able to selectively attend to the talker of interest while
ignoring others and noise. This phenomenon is referred to
as “cocktail party problem” [1] , and it could be explained
by the top-down attention modulation on cortical envelope
tracking to speech [2]–[4]. Firstly, electroencephalography
(EEG) and magnetoencephalography (MEG) studies exhibited
that auditory neural activities entrain to the temporal envelope
of speech [5]. Furthermore, during a selective attention task
, the temporal envelope of the attended speech was more
represented in listener’s neural responses than that of the
unattended speech, due to the top-down attentional modulation
[2]–[4]. Along with these studies, the approach called auditory
attention decoding (AAD) was proposed to determine the iden-
tity of the attended talker by analyzing the relation between
recorded neural activities and speech envelopes. Based on the
assumption of linear time-invariant system, the reconstruction
filter (also called as decoder) was designed as the impulse
response of the system, to map the electroencephalography
(EEG) data to the attended speech envelope. The decoder was

then convolved with EEG data to reconstruct the speech enve-
lope. Consequently, the talker whose actual speech envelope
has the maximum correlation coefficient with the reconstructed
envelope would be determined as listener’s attended target [6],
[7]. It has been reported that AAD accuracies of linear models
can reach a level as high as about 80–90% using 60-s decoding
window, but with shortened decoding windows (e.g., 5 and
10 s), the decoding accuracy significantly dropped to about
60–70% [8], [9]. Apparently, the long decoding window is too
sluggish to be used for application, e.g. in the neuro-steered
hearing aids [10], [11].

Deep neural network (DNN) has advantages in nonlinear
modelling and automatic feature extraction. The application
of DNN in AAD has made some progresses in improving
the decoding accuracy [12]–[15]. Firstly, a fully-connected
network (FCN) based model was proposed to reconstruct
speech envelope from EEG [14], as a replacement of the linear
decoder. The decoding result (i.e., identity of the attended
talker) was then determined by correlation analysis. The AAD
accuracy was about 70% for a 10-s decoding window, which
was greater than the linear model. Besides this regression
model, DNN-based classification models were also proposed.
A convolutional neural network (CNN) based model was
proposed to directly determine the locus of the attended talker,
which achieved about 80% accuracy with 2-s EEG data [13],
[15]. In another study [12], EEG and speech envelopes were
firstly transformed into a common latent space using CNN
and long short term memory (LSTM) layers, respectively. The
identity of the attended talker was then determined based on
similarity analysis in the latent space. The AAD accuracy
was about 80% for a 5-s decoding window. Generally, DNN-
based models outperformed the linear model, especially for
shorter decoding windows. Among these DNN-based models,
CNN is the most commonly used architecture for feature
extraction, due to its ability to capture the spatial features of
the EEG. However, the LSTM layer which is beneficial to
model sequential data and learn temporal context information,
is barely adopted for feature extraction of EEG.

In order to combine the advantages of CNN and LSTM,
in the current work, we proposed two novel convolutional
recurrent neural network (CRNN) based models, one for the
regression task and the other one for the classification task.
Such an architecture was expected to learn both the spatial and
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temporal features of EEG. We compared the proposed models
with the linear model and several state-of-the-art (SOTA)
DNN-based models, and tried to investigate the interpretability
of these DNN model.

II. METHODS

A. CRNN-based Regression Model

The basic idea of our proposed CRNN-based regression
model is that both the spatial and temporal context information
of EEG should be taken into consideration when predicting the
speech envelope. Fig. 1 shows the architecture of the model,
which consists of three layers: CNN, LSTM and dense layer.
The processed EEG (62 channels in the present work) was
firstly fed into a causal CNN layer (5 kernels, size: 16×62)
to extract spatial features. The five extracted features were
then separately passed through one unique LSTM layer (4
hidden units) to extract the temporal information, resulting in
five hybrid features. Finally, a shared dense layer (1 unit) was
applied to predict the amplitude of speech envelope at each
sampling time.

B. CRNN-based Classification Model
The proposed CRNN-based classification model is an end-

to-end model. Fig. 2 shows the architecture of the model. Both
the two speech envelopes and EEG data were provided as the
input, by concatenating the two speech envelopes to the left
and the right of the EEG data matrix, accordingly. The model
comprises of one CNN layer (5 kernels, size: 16×64), one
LSTM layer (16 hidden units), and one dense layer (2 units)
that was fed to a softmax classifier. One-hot label was used to
indicate the attended talker. As mentioned in [15] that a latency
should be introduced between EEG and speech envelopes in
consideration of the effect of attention on timings of neural
responses [3], a latency of 94 ms was used when organizing
the dataset.

C. Linear Regression Model
The linear regression model used here is the same as in

[6]–[9]. The decoder was calculated by the reverse correlation
method with regularization. Following the parameter settings
in , time lags ranged from 0 to 500 ms post-stimulus and the
regularization parameter was determined according to a leave-
one-out cross-validation approach.

Fig. 1. Architecture of the proposed CRNN-based regression model. The
figure shows the case when the decoding window length is 10 s.

Fig. 2. Architecture of the proposed CRNN-based classification model. The
figure shows the case when the decoding window length is 10 s.

D. FCN-based Regression Model

The FCN model used in the present work is the same
as that proposed in [14] for speech envelope reconstruction,
which served as the SOTA regression model. Specifically, in
the training scheme, the EEG data within a certain temporal
context (27 points, corresponding to about 422 ms) were fed
to two dense layers (2 and 1 unit, respectively) to predict the
amplitude of speech envelope in a sample-wise way. In other
words, continuous speech envelopes were predicted using the
same FCN weights.

E. CNN-based Classification Model

The CNN-based classification model used in the present
work is the same as that proposed in [15]. The input of the
model was the same as our proposed CRNN-based classifica-
tion model. The model comprised of one CNN layer (5 kernels,
size: 9×64), one average-pooling layer and two dense layers (5
and 2 units, respectively) that were fed to a softmax classifier.

F. CNN+LSTM-based Classification Model

The model used here was a variant of the model proposed
in [12] so that it was suitable for a two-talker scenario. And
this model served as the SOAT classification model. The two
speech envelopes and EEG data were passed through two
separate networks, respectively. The two envelopes were fed
to a shared network that consisted of a 1-D CNN layer (16
kernels, kernel size: 9×1) and a LSTM layer (16 hidden units).
The EEG data were fed to another network that comprised of
a 2-D CNN layer (8 kernels, kernel size: 9×7) and two-dense
layer (20 and 16 units, respectively). The cosine similarity of
the EEG feature and each envelope feature were calculated
respectively. Finally, a softmax classifier was applied to deter-
mine which speech was attended.

III. EXPERIMENTS

A. Participants and Materials

EEG data were recorded from twelve Mandarin-native NH
listeners. All subjects were given informed consent approved
by the Peking University Institutional Review Board.
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The stimuli used in this experiment were the audiovisual
speech corpus developed in [8]. There were 18 pairs of 60-
s length audiovisual speech and each pair contained mate-
rials of a female and a male talker. The experiment was
performed in an acoustically and electrically shielded booth.
The audiovisual (AV) stimuli were presented with two pairs
of screen-loudspeaker on the front left and front right of
the subject symmetrically. The screen-loudspeaker were 0.8
meters away from subjects, with three spatial separations
from the subject, 30°, 60° and 90°. During the presentation,
the female AV material was presented by one pair of the
screen-loudspeaker and the male AV material was presented
by another pair. Subjects were instructed to pay both auditory
and visual attention to the target talker, which was cued with
a red frame on either of the two screens. The target talker
would be switched between the two talkers for every 15 s or
30 s. Subjects could saccade and rotate head freely during
the stimuli presentation. Therefore, there were 6 conditions
(2 switching intervals × 3 spatial separations). And for each
subject, there were 3 pairs of AV speech out of 18 assigned
to each condition, and no AV speech was repeated across
conditions.

Continuous EEG data were acquired by a NeuroScan
system, using 62 scalp, 4 electrooculograms (EOG), and 4
electromyography (EMG) electrodes, with the reference on the
nose-tip. The recording of EOG and EMG was for the purpose
of artifacts rejection. EEG data were online bandpass filtered
(0.15–100 Hz), digitized (500 Hz sampling rate), and stored
for offline analysis. For each subject, 18 pairs of audiovisual
speech were presented twice with different switching targets,
thus there were 36 trials per subject and 432-min data (=36
trials × 12 subjects) in total.

B. Speech and EEG Signal Preprocessing

To calculate the speech temporal envelope, the 60-s clean
speech signal was first passed through an auditory bandpass
filter-bank. Hilbert transform was then performed on the output
of each band. The analytical signals were then power-law
compressed and lowpass filtered. Lastly, the filtered signal of
all bands were averaged to obtain the temporal envelope. As
suggested in [14], [15], the cutoff frequency of the lowpass
filtering was 8 Hz for use with the linear model, and was 32
Hz for use with DNN models.

EEG data were processed using the EEGLAB toolbox [16].
After recalculating noisy channels by interpolation, EEG data
were re-referenced to a common average reference, down-
sampled to 64 Hz, baseline corrected and lowpass filtered
(the cutoff frequency was matched with the speech envelope
calculation). Then, artifacts (e.g., saccade, blink and head rota-
tion) were removed by using independent component analysis
(ICA). After all, both speech temporal envelope and EEG
signals were normalized to have 0 mean and 1 variance.

C. Experiment Setup

For each subject, data of the first 28 trials and the last 8 trials
(corresponding to the first 14 and the last 4 pairs of AV stimuli)

were allocated to the training and testing set, respectively.
Thus, there was no overlap between the training set (77.8%,
336 mins) and testing set (22.2%, 96 mins). Afterwards, both
sets were further split into segments with duration of 2, 5
and 10 s with 50% overlapping. In summary, there were three
different decoding windows (2, 5 and 10 s) adopted for both
training and testing in the present study.

For DNN-based regression models, the envelope of the
actual attended speech served as the supervision, and the
correlation coefficient (Pearson’s r) between the predicted
envelop and the actual attended envelope was calculated as
a measure of loss function [14]. For DNN-based classification
models, the identity of the actual attended talker served as
supervision, and the binary cross-entropy loss function was
used.

During training, the Adam optimizer was adopted. To pre-
vent overfitting, dropout rate of 25% was used, and batch size
was set as 128. Training was stopped when no loss reduction
was found for 10 consecutive training epochs. During testing,
for regression models, the classification result was determined
by selecting the talker whose actual speech envelope had the
greater correlation coefficient with the reconstructed envelope.
And classification models directly output the identity of the
attended talker. The AAD accuracy was further evaluated by
the percentage of correctly-classified trials among all testing
trials.

The linear model was implemented by the mTRF toolbox
[17] and the DNN-based models were implemented based on
Keras 2.3.1 platform [18].

IV. RESULT AND DISCUSSION

A. Decoding Performance

The model complexity and decoding accuracy for each
model as a function of decoding window are shown in
Table. I. As expected, as the simplest model, the linear
model performed the worst among all models. For DNN-
based classification models, our proposed CRNN-based model
outperformed others for shorter decoding windows (i.e., 2 and
5 s), indicating the effectiveness of combining both spatial
and temporal features. CNN-based classification model was
the best for 10-s decoding window. For the three regression
models, our proposed CRNN-based model outperformed the
FCN-based model and was the best for all decoding windows.
For the four existing models (i.e., linear, FCN, CNN and
LSTM+CNN), AAD performances calculated in the present
study were quite similar to the results reported in literatures
[12]–[15].

The results also showed that classification models out-
performed regression models for most conditions. This is
likely because classification models directly optimize the AAD
accuracy, but regression models only optimize the accuracy
of reconstruction. However, it should be mentioned that the
CNN-based and CRNN-based classification models works
well for binaural scenarios, but not for monaural scenarios,
since the two models mainly decodes the locus of spatial
attention [19]. On the contrary, regression models determine
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TABLE I
MODEL COMPLEXITY AND DECODING ACCURACY OF EACH MODEL.

BOLDFACE INDICATED BEST RESULT.

Model #Para. Window (s)
2 5 10

Classification
CNN [15] 2.7 k 83.8 84.2 81.2
CNN+LSTM [12] 7.5 k 82.3 80.6 66.4
CRNN 6.2 k 87.4 90.9 72.9

Regression
Linear 2.0 k 56.9 60.4 60.8
FCN [14] 3.1 k 56.2 60.9 62.3
CRNN 5.2 k 61.3 66.6 67.6

auditory attention by comparing the similarity between the
reconstructed envelope and actual envelopes, so it works for
both binaural scenarios and monaural scenarios. Although
the CNN+LSTM based classification model outputs auditory
attention directly, it actually does regression in the latent space,
which makes it working on both scenarios as well.

To explore the robustness of different models to attention
switching, continuous decoding results of testing trials are
shown in Fig. 3, with a 5-s decoding window and 15-s
switching interval as an example. On average, all models could
correctly respond to the attention switching with a latency of
about 5 s. DNN-based models generally had shorter latency
and less errors than the linear model. Besides, comparing
with regression models, classification models were also more
sensitive to the attention switching. These results preliminar-
ily indicated the feasibility of applying the AAD methods
in realistic scenarios in which attention switching happens
frequently. Nevertheless, reduction of the algorithm latency
is still challenging and worthy of further research.

B. Interpretability of DNN Models

For the linear model, the decoder is considered as a set
of spatial-temporal filters, and the value of each filter could
be considered as the weighting parameter at certain time lags
[7]–[9]. For example, both temporal and occipital region were
found contributing to AAD prominently for AV condition, and
there was a difference between the timings of these two regions

Fig. 3. Continuous decoding results averaged across testing trials. Vertical
dashed lines indicates the timings of attention switching, and the shaded area
indicates standard error. The figure shows the case that the decoding window
is 5 s and the switching interval is 15 s.

Fig. 4. Topographies of the averaged and RMS value of layer weights for
different models.

involving in AAD [8]. However, the interpretability of DNN
models is considered quite challenging. In the present study,
we attempted to interpret these AAD models by visualizing
the weights of DNN layers. For the CNN and CRNN-based
models, only the 1-D CNN layer was visualized for the
convenience of illustration. For the FCN-based regression
model, the dense connections were treated as kernels. The
linear decoder was also visualized for comparison.

As suggested in [8], [20], the averaged and RMS value
across time were used to describe the general characteristics
of each kernel. The visualizations are shown in Fig. 4. For
the CNN-based classification model, the first 3 kernels were
consistent across time (indicated by the RMS value), and had
opposite polarities between the left and right frontal lobe
(indicated by the averaged value). Therefore, these kernels
were considered relating to the spatial attention to the target
talker. The last 2 kernels had similar averaged patterns with
others, but were inconsistent across time over temporal and
occipital region. Hence, besides the spatial attention, these
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kernels were also related to temporal processing (i.e., process-
ing AV stimuli). For the proposed CRNN-based classification
model, the patterns of kernels were more complex than the
former model. All kernels exhibited the opposite polarities
between the left and right frontal lobe, and were inconsistent
across time as well, which indicated that the kernels learned
to extract features of both spatial and temporal dimensions.
Kernels of regression models (i.e., CRNN-based, FCN-based
and the linear model), unlike the classification models, all
showed prominent contributions from temporal and occipital
regions. These patterns were consistent with the linear decoder
reported in [8]. This is rational because regression models were
built to learn the mapping from EEG to temporal envelope of
speech, and both temporal and occipital regions were demon-
strated processing the speech envelope for the congruent AV
condition [8]. Relative to the linear model, the more complex
kernels of the two DNN-based regression models indicated that
DNN models learned more sophisticated mapping systems.
This could be the reason that DNN-based regression models
outperformed the linear model.

The ability to further extract the temporal features by the
LSTM layer amid the two CRNN-based models, is likely
account for their higher decoding accuracy than other models
of the same type. However, the visualization of weights of
LSTM layer is not intuitive. Therefore, a thorough discussion
about the interpretability of complicated DNN models is still
challenging.

V. CONCLUSION

In this paper, we proposed two novel CRNN-based models
for the AAD task, from the perspective of regression and
classification. To verify the validity of our proposed models,
we compared the AAD performances with the linear model
and SOAT DNN-based models, and three types of decoding
windows. Furthermore, the interpretability of these DNN-
based models was investigated by visualizing the weights
of DNN layers. The main findings were, (1) our proposed
CRNN-based models both outperformed other models of the
same type, especially with shorter decoding windows; and (2)
our proposed CRNN-based models had a certain degree of
interpretability, since they were demonstrated extracting both
spatial and temporal feathers of EEG. The improvements of
AAD performance by our novel DNN-based models favored
the possible AAD application, such as neuro-steered hearing
aids.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant Nos. 61771023, 12074012, and
U1713217), a research funding from SONOVA, and the High-
performance Computing Platform of Peking University.

REFERENCES

[1] E. C. Cherry, “Some experiments on the recognition of speech, with one
and with two ears,” J. Acoust. Soc. Am., vol. 25, no. 5, pp. 975–979,
Sep. 1953.

[2] H. Luo and D. Poeppel, “Phase patterns of neuronal responses reliably
discriminate speech in human auditory cortex,” Neuron, vol. 54, no. 6,
pp. 1001–1010, Jun. 2007.

[3] N. Ding and J. Z. Simon, “Emergence of neural encoding of auditory
objects while listening to competing speakers,” Proc. Natl. Acad. Sci.
U.S.A., vol. 109, no. 29, pp. 11 854–11 859, Jul. 2012.

[4] N. Mesgarani and E. F. Chang, “Selective cortical representation of
attended speaker in multi-talker speech perception,” Nature, vol. 485,
no. 7397, pp. 233–236, May 2012.

[5] E. C. Lalor and J. J. Foxe, “Neural responses to uninterrupted natural
speech can be extracted with precise temporal resolution,” Eur. J.
Neurosci., vol. 31, no. 1, pp. 189–193, Jan. 2010.

[6] B. Mirkovic, S. Debener, M. Jaeger, and M. De Vos, “Decoding the
attended speech stream with multi-channel EEG: implications for online,
daily-life applications,” J. Neural Eng., vol. 12, no. 4, p. 046007, Aug.
2015.

[7] J. A. O’Sullivan, A. J. Power, N. Mesgarani, S. Rajaram, J. J. Foxe,
B. G. Shinn-Cunningham, M. Slaney, S. A. Shamma, and E. C. Lalor,
“Attentional selection in a cocktail party environment can be decoded
from single-trial EEG,” Cereb. Cortex, vol. 25, no. 7, pp. 1697–1706,
Jul. 2015.

[8] Z. Fu, X. Wu, and J. Chen, “Congruent audiovisual speech enhances
auditory attention decoding with EEG,” J. Neural Eng., vol. 16, no. 6,
p. 066033, Nov. 2019.

[9] S. A. Fuglsang, T. Dau, and J. Hjortkjær, “Noise-robust cortical tracking
of attended speech in real-world acoustic scenes,” Neuroimage, vol. 156,
pp. 435–444, Aug. 2017.

[10] L. Fiedler, J. Obleser, T. Lunner, and C. Graversen, “Ear-EEG allows
extraction of neural responses in challenging listening scenarios — A
future technology for hearing aids?” in 2016 38th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC). Orlando, FL, USA: IEEE, Aug. 2016, pp. 5697–5700.

[11] W. Pu, P. Zan, J. Xiao, T. Zhang, and Z.-Q. Luo, “Evaluation of
joint auditory attention decoding and adaptive binaural beamforming
approach for hearing devices with attention switching,” in ICASSP 2020
- 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Barcelona, Spain, May 2020, pp. 8728–8732.

[12] M. J. Monesi, B. Accou, J. Montoya-Martinez, T. Francart, and H. V.
Hamme, “An LSTM based architecture to relate speech stimulus to
EEG,” in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), May 2020, pp. 941–
945.

[13] G. Ciccarelli, M. Nolan, J. Perricone, P. T. Calamia, S. Haro,
J. O’Sullivan, N. Mesgarani, T. F. Quatieri, and C. J. Smalt, “Compar-
ison of two-talker attention decoding from EEG with nonlinear neural
networks and linear methods,” Sci Rep, vol. 9, no. 1, p. 11538, Dec.
2019.

[14] T. de Taillez, B. Kollmeier, and B. T. Meyer, “Machine learning for
decoding listeners’ attention from electroencephalography evoked by
continuous speech,” Eur. J. Neurosci., vol. 51, no. 5, pp. 1234–1241,
Mar. 2020.

[15] L. Deckers, N. Das, A. H. Ansari, A. Bertrand, and T. Francart, “EEG-
based detection of the locus of auditory attention with convolutional
neural networks,” Neuroscience, preprint, Nov. 2018.

[16] A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent component
analysis,” J. Neurosci. Methods, vol. 134, no. 1, pp. 9–21, Mar. 2004.

[17] M. J. Crosse, G. M. Di Liberto, A. Bednar, and E. C. Lalor, “The
multivariate temporal response function (mTRF) toolbox: A MATLAB
toolbox for relating neural signals to continuous stimuli,” Front. Hum.
Neurosci., vol. 10, Nov. 2016.

[18] F. Chollet et al., “Keras,” https://keras.io, 2015.
[19] S. Vandecappelle, L. Deckers, N. Das, A. H. Ansari, A. Bertrand, and

T. Francart, “EEG-based detection of the locus of auditory attention with
convolutional neural networks,” Neuroscience, preprint, Feb. 2020.

[20] Z. Fu and J. Chen, “Congruent audiovisual speech enhances cortical
envelope tracking during auditory selective attention,” in Interspeech
2020, Oct. 2020, pp. 116–120.

974


