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Abstract—We present a prototype system for the acoustic
monitoring of artificially ventilated patients in intensive care.
A device placed in the patient room detects sounds indicating
an emergency situation and notifies a pager of the care staff.
The staff can react more quickly and take appropriate action,
as well as provide feedback on the prediction for continual
learning. A microphone array with adaptive beamforming and
an integrated microcomputer is employed, autonomously per-
forming recording, audio preprocessing as well as deep learning
based inference. The training dataset originates from a variety
of patients and spatial and sonic environments, accommodating
for different patterns of background noise and distortions. Mel
spectrograms of short length are extracted and used for training a
convolutional neural network. An initial evaluation of the system
shows an accuracy of 80% for a binary, balanced dataset. The
system is deployed in several intensive care facilities and can
easily be adapted to other types of medically relevant sounds.

Index Terms—acoustic monitoring, beamforming, convolu-
tional neural network, mel spectrograms

I. INTRODUCTION

Acoustic monitoring has gained importance in recent years,
including a variety of applications related to the detection
and evaluation of audio events, in predictive maintenance,
surveillance or home assistance devices. Acoustic monitoring
for medical applications, however, has not seen comparable
progress, mostly due to the challenge of reliably detecting
complex medical conditions based on sound and the lack of
sufficient open source data available for training. The current
project wanted to address this gap and demonstrate that it is
possible to build an integrated audio processing system which
can be used to detect emergency situations requiring interven-
tion by medical staff. To achieve that, appropriate data for a
specific medical application was gathered in cooperation with
an industrial and a care service provider in order to develop
a deep learning framework and a prototype hardware device
on which the model may run in order to detect emergency
situations based on audio data only.

The specific application includes patients who do not have
the ability to move or speak, and who occasionally have
a build-up of internal secretions in their pulmonary-throat
system. In such cases, the patients have to be suctioned by
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intensive care staff. When patients experience this situation,
their normal breathing noises change so that a characteristic
wheezing sound ensues, indicating the existence of an emer-
gency situation to be addressed. If the nursing staff, however,
is not standing right next to the patient at that moment, it is
difficult to recognize such a build-up early enough to avoid
patient distress. In order to detect this category of sounds, a
convolutional neural network (CNN) was employed, trained on
sound data recorded in the patient care institutions and labeled
by experienced nursing staff. This data comes from different
patients and different spatial and sonic environments to ensure
the generalizability of the model. The trained model has the
task of classifying sounds as critical or non-critical.

The acoustic monitoring device was developed as an inte-
grated hardware and software system, consisting of

• an audio preprocessing and training system, which can
be used to train models on a standard workstation,

• a prediction module, which runs on the microcomputer
device itself and is used for inference only, and

• a hardware device for recording, including beamforming
with a microphone array, basic audio processing and
process handling, as well as wireless communications and
system calls.

II. STATE OF THE ART

Acoustic monitoring can be considered as a special case of
auditory scene analysis and audio event detection. Most works
in this area employ CNNs for detection of human and ma-
chine sounds [1] or Convolutional Recurrent Neural Networks
(CRNNs) [2] used for tasks with a strong temporal dependence
between the samples and providing reliable predictions even
for datasets which are weakly labeled.

For acoustic monitoring, similar approaches have been used
for animal species identification [3] or for industrial sounds
such as rail condition monitoring [4], [5]. There are very few
reports on medical applications based on audio data. A recent
study aiming at detection of COVID19 from voice [6] uses
transformer networks and RNNs, achieving promising results.
Due to the high relevance of this subject, similar COVID19
related studies have emerged in the latter time, also using
RNNs to detect COVID19 from basic acoustic features such
as MFCCs derived from acoustic signals, such as coughing or

980ISBN: 978-9-0827-9706-0 EUSIPCO 2021



breathing, with high accuracy [7]; by crowdsourcing patient
data and comparing respiratory sounds to those of healthy
individuals, [8] could use transfer learning and basic audio
features to reach an Area-Under-Curve (AUC) higher than
80%; and fully combined software and mobile systems [9],
comparing the results of an acoustic cough probe to database
samples in real time, in order to rapidly detect an infectious
situation. Furthermore, our work has a similar goal to the
one in [10] where a system for the detection of asthmatic
patients is presented, while in terms of methodology we are
aligned with more recent approaches using space-time audio
representations and deep learning to detect tuberculosis-related
cough samples [11]. Since the signals to be detected in our
case are in essence a special category of breathing noise, our
task is similar to the one in [12], where a combination of
spectrogram and transducer data was used in conjunction with
CNNs and RNNs to detect different categories of abnormal
breathing signals.

Systems similar to those mentioned above have also been
coupled to smart hardware devices or sensor networks, in
order to expand their field of application. These include
approaches involving IoT-Cloud technologies, specifically us-
ing a distributed network of sensors to gather Electro-
EncephaloGraphy (EEG) and other data from patients and
employing deep learning to make a prediction about an
underlying pathology [13] such as the detection of epileptic
seizures [14]. Another approach [15] uses a wireless sensor
network, receiving a variety of physiological data (e.g., blood
oxygenation level and pulse rate) from end-devices which
can be used to provide an estimation of whether there is an
emergency situation for a patient in a hospital setting.

In comparison to the papers mentioned above, our study
has the novelty of combining a very light but versatile
microcomputer system with networking capabilities, which
employs an expandable and improvable deep learning system
for classifying emergency situations based only on audio.

III. METHODS

A. Overview

The proposed system was developed for intensive care units
organized as shared apartments rather than in hospitals, with
one device per room. It is designed to communicate with a
central workstation using a local wireless-based network.

Each device will function and record continuously in one
room to provide a prediction for an audio slice just seconds
after it has been recorded. Because the on-site situation differs
from patient room to patient room, and it is not possible to
guarantee a fixed positioning of the device in every room,
we decided to use a beamforming microphone array to be
adapted to the specific acoustic scene and to reduce ambient
noise. The recorded and preprocessed audio is forwarded to the
data processing and ML-based inferencing part of the system,
which performs a Short-Time-Fourier-Transform (STFT) and
creates Mel spectrograms used an an input to the inference
system. The latter uses a pre-trained CNN model and provides
a binary output together with its probability, indicating whether

Fig. 1. System components of the Microcomputer.

there is an emergency or not. This result is forwarded to
a custom-made pager, by which the staff is notified. After
medical interventions have been performed, the staff can
press a button on the device to provide feedback necessary
to improve the model using continual learning methods, but
also to facilitate an overview of the data over time from
the staff via a graphical user interface (GUI). The device
also offers a locally executed hands-free user interaction by
voice-controlled commands and feedback on the current device
status, which is also displayed visually via the integrated LED
ring. An overview of the system is shown in Figure 1. A
medical device must not have undefined states. A device state
machine designed as borg idiom acts as central controller unit.
States can be listening, suspended, error, setup and alarm. In
setup mode e.g. the direction of the main lobe can be adjusted.
As a hands-free option a local voice detection [16] runs at
the whole program life cycle. No recordings are made here,
no data is transmitted over the internet and only commands
preceded by an artificial hotword in the sequence Hotword
+ Command + Parameter are handled and confirmed with
acoustic and visual feedback.

B. Beamforming

The array dimensions determine the limits of spatial acous-
tic performance. A low directivity can be expected for frequen-
cies with wavelengths that are relatively large in relation to
the extension of the microphone array. On the other hand, for
frequencies with wavelengths that are small compared to the
array diameter, spatial aliasing will occur leading to unwanted
constructive interference for sound incidence directions that
are not of interest leading to decreasing directivity. The
frequency range unaffected by both restrictions lies between 1
and 3.7 kHz. Figure 2 shows the typical spectral and temporal
shape of the signal of interest, the rattling sound of secretion
accumulations that impair breathing, and the directivity index
of the microphone array.

It can be seen that the frequency region of increased
directivity corresponds quite well to the spectral shape of
the signals of interest. This can be the case when where a
high noise rejection from other angles of incidence is most
required. Considering the limited resources of an Edge ML
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Fig. 2. Spectrogram of a typical positively labeled audio example (wheezing
breath, 1 s) and directivity index over frequency for the 6-channel microphone
array with a radius of r = 0.047 m.

system, a delay-and-sum (DS) algorithm was chosen, which
is robust and not very demanding in terms of the required
computational power. The audio recording is organized in a
modular, chained manner in several threads. To improve access
times the recording directory is placed in a ramdisk, which acts
as a LiFo buffer for 1 s audio slices. From there, the inference
module can load the audio slice in single-digit milliseconds as
soon as the recording is finished. Both processes - beamformed
recording and inferencing - run in parallel.

C. Audio Processing and Classification

For classification, we used a basic CNN architecture with
an increasing number of nodes (16, 32, 64, 128) with filters of
size (8, 4) pixels (in order to perform a frequency reduction)
followed by two fully connected layers of a 200 and 100 nodes,
adding up to a total number of just over 1.5M parameters,
which makes up for a very lightweight system. After every
convolutional layer batch normalization was employed before
a RELU activation function followed by (2, 2) max pooling.
For the fully connected layers, no dropout was used and the
activation was RELU apart from the last layer which uses
softmax activation for the two output nodes. The complete
architecture is shown in Fig. 3. The model was trained with
a learning rate of 3 x 10−5 for a total of 12 epochs, until we
could not observe a further change in validation loss.

The full training pipeline and prediction system consists of
two parts, one for training on a standard workstation, and one
for the inference on the hardware device.

After training a model, it becomes serialized as a tf-lite
file and the inference system only runs a prediction on the
Mel spectrogram from the currently recorded sound file. The
prediction is performed in about 215 ms, the longest part of
the processing (ca. 80%) being the spectrogram extraction.

1 32 16
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1 20
0

1 10
0

2
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Fig. 3. Architecture for the employed CNN. The system consists of 4
convolutional layers with rectangular filters, followed by two fully connected
layers and a binary output softmax.

D. Data

For the model training we created a custom dataset of
sounds recorded in the patient care institutions. The recordings
took place in 4 different care homes and 10 patients, resulting
in a total of over 10 TB of data gathered over 12 months.
The data was collected by the patient care staff during their
everyday service. The nursing staff kept a log of the timing
of emergency situations, based on which events were labeled
with their exact start and end times by members of the audio
communication group. Based on these annotations together
with the raw audio data, the training dataset was created
including a sufficient amount of ambient sounds from the
patients rooms such as device sounds, television or radio noise
and sounds from the patients, resulting in a diverse database
of soundscapes.

Using these recordings, a balanced dataset of 2000 1 s
long samples was created by cutting and storing respective
chunks denoting the time of occurrence, the type of emergency
detection confidence (positive, medium or negative) and the
type of background noise (noise, speech or music). The chunks
do not have any overlap and they were selected with a clear
assignment as emergency or non-emergency sounds to ensure
maximum separability of the ground truth data classes. The
length of 1 s was chosen as a trade-off between retaining
enough acoustic information in the chunk and ensuring fast
processing. No further pre-processing was applied. From these
audio files the Mel spectrograms for the input of the CNN but
also the labels for classification system can be created. Since
the care provider explicitly desired an unambiguous response
of the prediction (emergency or no emergency), but also to
increase classification performance, we decided to employ a
binary classification scheme (emergency or non-emergency).

In the first iteration, due to the smaller number of positive
(emergency) samples, we decided to consider all the medium
cases as positive, which can also be expected to increase the
system’s sensitivity.
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Fig. 4. Classification results for the best model, Accuracy 80.2%, F-Score
79.4%, training with 1400, validation with 600 samples.

E. Hardware

The hardware consists of two sub-components:

• A Seeed Studio ReSpeaker Core v2 development module
[17].

• A microcontroller-based pager unit (TTGO Lora32 Oled)
with redundant wireless connectivity.

In contrast to a conventional microphone, a beamforming
microphone array can change its directional characteristic
under software control (steering). In contrast to a linear array,
with a circular array, due to its geometry, a distinction can
also be made between the directions of sound incidence
from behind and from the front. The ReSpeaker Core v2
[17] is an uniform circular MEMS microphone array with
integrated microcomputer. More precisely, a System-on-a-Chip
[SoC] rock chip RK3229 (Quad Core A7) running a modified
[18] light, command-line-only Linux (Debian 10). The device
provides wireless connectivity via Wifi and Bluetooth, speaker
output and further interfaces e. g. serial or I2C.

As hardware of the prototype pager system a Lilygo TTGO
Lora ESP32 OLED [19] module was chosen, providing LoRa
(Long Range) as an energy-saving long-distance radio con-
nection with low power consumption (863 MHz, AES 128
bit), WiFi (2.4 GHz, WPA 2) as fall-back, and an integrated
display. The transceiver unit on the microphone array sends its
detection and device states as addressed encrypted messages to
all pager units and vice versa. The WiFi network is configured
as a mesh for a good coverage and is only used by the
pager if the Lora radio connection is interrupted. Due to the
large range of 150–300 m indoors [20] [21], however, this
should rarely occur. Since the microphone arrays and their
transceiver modules are powered with mains voltage, they keep
both networks in parallel, while the battery-operated pagers
preferably use the Lora connection. A complete connectivity
failure in both networks is indicated by the pager both visually
and acoustically, as well as an alarm due to positive inference
events.

IV. RESULTS AND DISCUSSION

We conducted a 3-fold cross-validation using all samples
produced an total average accuracy of 80.2% on the valida-
tion set, with a recall of 78.7% and a precision of 80.1%,
which leads to an F-Score of 79.4%. The confusion matrix is
shown in Fig. 4. The evaluation showed that a system with
relatively little training data can achieve an accuracy which
is comparable to the results of similar studies using audio
to detect medically relevant situations [6]. The care provider
communicated that they would consider a prediction with the
achieved accuracy as a valuable support for their response
to an emergency. Especially the relatively high recall means
that very few true positive cases are missed. However, the
precision being just over 75% means that roughly one in every
four predicted samples has a high probability of being a false
positive. By employing statistical aggregation methods over
several samples in a time period (e.g. 10 s) we will be able
to adjust the prediction threshold and expect that this will
improve the overall accuracy of the system.

Field tests of our system will be performed in order to see
how we can raise its performance in real life operation. By
employing continual learning and specializing the currently
still generic model on the specific sounds of the respective
patients and their environment, we expect to be able to increase
the accuracy of the predictions. At the moment, the system
provides lower accuracy than the results presented in [7], but
close to those presented in [6]. A possible reason for this
is that the above systems concentrated only on COVID19-
related rather than more heterogeneous sounds using a smaller
dataset than most systems in [22]. To improve the inferencing
time of a single audio we will involve model quantization, by
restructuring the model and reducing the number precision
from 32-bit floats to 8-bit integers. This not only could
lead to a reduction in the model size by up to 75% [23],
but - more importantly in our case - to a faster execution
of the inferencing, especially when it is outsourced to an
external Edge TPU co-processor [24]. The study showed that
an integrated system for emergency detection solely based
on audio can achieve sufficient performance to be used to
successfully assist intensive care personnel to shorten the time
to start a medical procedure. A study evaluating the impact of
the system on everyday work in nursing facilities has already
begun. This will also help to tune the system parameters and
the detection thresholds so as to increase the usability and
acceptance of the device by the medical staff. Furthermore, it
is planned to include other bio-parameters of the patients (e.g.,
oxygen saturation levels) in order to increase the reliability of
the emergency prediction.
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