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Abstract—Transfer learning is a popular strategy to over-
come the difficulties posed by limited training data. It uses
the parameters of the source task to initialize the parameters
of the target task. In this study, we cast transfer learning
as a regularization procedure. In addition to initialization, we
incorporate the source task parameters into the cost func-
tion used to train the target task. We regularize the learned
parameters by penalizing them if they deviate too much
from their initial values. We demonstrate the power of the
proposed transfer learning scheme on the task of COVID-
19 opacity https://www.overleaf.com/projectsegmentation. Specif-
ically, we show that it can improve the segmentation of coron-
avirus lesions in chest CT scans.

Index Terms—transfer learning, segmentation, regularization,
Covid-19

I. INTRODUCTION

One of the main differences between the medical imaging
domain and computer vision is the need to cope with small
datasets and a limited amount of annotated samples [1] [2] [3]
[4]. Collecting medical data is usually an expensive procedure
that requires the collaboration of radiologists and researchers.
This problem is even more acute in the case of supervised
machine learning algorithms, in which the training requires
labeled data and larger sets of training examples. Training an
automatic medical imaging system is based on annotations,
which can only be made by radiologists with vast expertise
about the data and the task. Such annotations are time-
consuming, even when done by experts. This is true for image
classification tasks and is even more problematic in organ or
lesion segmentation tasks. For some medical tasks, medical
datasets are available online, and grand challenges have been
publicized for others. Today, however, most datasets are still
collected from a single hospital or several hospitals who have
datasharing protocols. These datasets are limited in size and
only applicable to specific medical problems.

Transfer learning is a popular strategy to overcome the
difficulties posed by limited training data. The goal of transfer
learning is to transfer knowledge from a source task to a
target task by using the parameter set of the source task
in the process of learning the target task. Transfer learning
utilizes models that are pre-trained on large datasets, that
can either be scenery datasets such as ImageNet or medical
datasets from a similar domain. The pre-trained network is
further trained on the specific target task of interest, which

has fewer labeled examples than the source task. There is a
plethora of work on using transfer learning in different medical
imaging applications (e.g. [5] [6]). Despite the popularity of
transfer learning in medical imaging, there has been little work
analyzing its precise effects [7].

In this study, we examined whether using the source pa-
rameters to initialize the target parameters is the best way to
transfer knowledge. Injecting information into a network via
parameter initialization is problematic since this information
can be lost during the optimization procedure. Catastrophic
forgetting [8] is the tendency of a neural network to completely
and abruptly forget previously learned information upon learn-
ing new information. In transfer learning, the target model is
not expected to handle the source task and it tends to forget
it. However, we still expect that the feature processing, which
is done by the source network, not to be completely forgotten.
Another variant of transfer learning is freezing the first layers
of the source network and only training the last layers that
perform the actual classification required by the target task.
This strategy does not suffer from knowledge forgetting.
However, if the target domain data are substantially different
from the original data, the low-level processing performed by
the first layers will not be suitable for the new data.

In this study, we propose a transfer learning method that ad-
dresses the information forgetting problems described above.
Instead of using the parameters of the source network as an ini-
tialization, we use them as a regularization term. We penalize
the learned parameters of the target task if they are too far from
the source network. This way, we overcome the catastrophic
forgetting problem and benefit from the knowledge acquired
by the source task.

Closely related to our work, Li et al. [9], investigated
several regularization schemes that explicitly promote the
similarity of the fine-tuned model with the original pre-trained
model. Different from that method, our proposed approach
concentrates on the relevant subset of layers to fine-tune in
a pretrained model on a new task. We concentrate here on
U-net networks that are applied to the task of medical image
segmentation. We apply regularized transfer learning only on
the encoder while training the decoder from scratch.

We applied this transfer learning strategy to the task of
COVID-19 opacity segmentation and show that it improves
the segmentation of coronavirus lesions in chest CT scans.
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II. TRANSFER LEARNING REGULARIZATION

The U-net architecture was introduced by Olaf Ronneberger
et al. [10] and has become the state-of-the-art for medical
image semantic segmentation. It is composed of two main
pathways: a contraction path (the encoder) that captures con-
text by processing low-level information, and the expanding
path (the decoder), which enables precise localization. The
U-net encoder performs low and mid-level processing of the
pixel map leading to a latent image representation. In contrast,
the U-net decoder, generates the network’s decisions based on
the computed representation and it is focused on a specific
task accomplished by the network. The most common way
of utilizing transfer learning with U-net is by initializing the
encoder with pre-trained weights and then either freezing it,
or allowing re-training, depending on the target data size and
computational power limitations. The decoder, which is task-
dependent, is trained from scratch.

Regularization is a method for preventing overfitting to the
training data. Let θ be the parameter-set of a given neural
network. L2 regularization is a popular scheme, that modifies
the (cross-entropy) loss function Loss(θ) which we minimize
by adding a regularization term that penalizes large weights:

Cost(θ) = Loss(θ) + λ‖θ‖2, (1)

where λ is the regularization coefficient. Adding the L2 term
usually results in much smaller weights across the entire
model, and for this reason is known as weight decay. Adding
L2 can be viewed as imposing a zero-mean Gaussian prior
to the parameter set. This transforms the optimization prob-
lem from one that involves performing maximum likelihood
estimation (MLE) to one that involves maximum a posteriori
(MAP) estimation; i.e. a shift from using frequentist inference
to Bayesian inference.

We propose to exploit the full potential of the knowledge
already acquired by the model on the source task, by enabling
changes in weights, but under a certain constraint. We formal-
ize this intuition by considering the parameters of the source
network as the means of a Gaussian prior on the parameters
of the target task. The proposed cost function is:

Cost(θ) = Loss(θ) + λ‖θencoder − θ̄encoder‖2 (2)

s.t. θ = (θencoder, θdecoder) and θ̄ = (θ̄encoder, θ̄decoder) are
the parameters of the source and target networks, respectively.
In other words, the parameters of the source network form a
Gaussian prior on the target parameters:

θencoder ∼ N (θ̄encoder,
1

λ
I). (3)

Setting the hyper-parameter λ to ∞ results in freezing the
regularized parameters. By setting the hyper-parameter λ to
zero, we obtain standard transfer learning where the only way
knowledge is transferred to the target task is via parameter
initialization. Choosing a value for λ in the range of (0,∞)
controls the amount of knowledge we want to transfer from
the source to the target task. In practice, λ is a hyper-parameter
that can be tuned using cross-validation.

Fig. 1. Segmentation results for coronavirus lesions in chest CT scans as
a function of the regularization coefficient λ, for three different pre-training
scenarios.

One of the major components of the transfer learning
scheme is the identity of the source task and its degree of
similarity with the target task. This similarity can be measured
in terms of the structure of the input image, whether it is an
image of scenery, or a medical image (e.g. MRI, Ultrasound,
X-ray). This similarity can also be measured by the task type
of the source; e.g. the same organ, similar pathology. It is our
hypothesis that the greater the similarity between the source
and target tasks, the larger the optimal value of λ will be. We
therefore explore network regularization in several scenarios:
from natural image pre-training using ImageNet, to a network
pre-trained with medical context. We next describe the network
architecture and pretraining used.

A. Implementation details

We focused here on the task of COVID-19 opacity segmen-
tation. We used a 2-D U-net [10] with a DenseNet121 [11]
backbone. In our implementation, the decoder was composed
of decoder blocks and a final segmentation head, which
consisted of a convolutional layer and softmax activation.
Each decoder block consisted of a transpose convolution
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Image slice λ = 0 λ = 8 λ = 50

Fig. 2. Qualitative comparison of COVID-19 opacity segmentation with different transfer learning regularization. Three examples are shown. Green, red, and
yellow represent TP, FP, and FN prediction respectively.

layer, followed by two blocks of convolutional layers, batch
normalization, and ReLU activation. For the cost function,
we used weighted cross-entropy, where the weights were
calculated using the class ratio in the dataset.

In our experimentation we investigate regularization in
varying pre-training scenarios. We implemented three source
tasks and used them to pre-train the encoder on the target task
(the decoder was trained from scratch). The three source tasks
were as follows:
• Natural-image pre-trained network: U-net with encoder

that was trained on ImageNet. Hereon we term this network
“Nat-pretrained-net”.

• Medical-image pre-trained network: U-net with encoder
that was trained from scratch on several publicly available
medical imaging segmentation tasks [12]. This is based
on our earlier work [13], in which we introduced the “Hy-
draNet”, a U-net-based, fully convolutional neural network,
with a shared encoder for global feature extraction followed
by several task-specific decoders. Hereon, we term this
network “Med-pretrained-net”.

• Combined natural and medical image pre-training
network: Encoder was initialized with ImageNet weights
and then trained on the medical datasets as above. We term
this network “Med+Nat-pretrained-net”.

The overall system consisted of the trained model and
a series of image processing techniques for both the pre,
and the post-processing stages. For pre-processing, all the
input slices were clipped and normalized to [0,1] using a
window of [-1000, 0] HU and then resized to a fixed spatial
input size of 384×384. The trained network was applied on
each slice separately. To construct the 3-D segmentation, we
first concatenated the slice-level probabilities generated by
the model, and then applied a post-processing pipeline that
includes morphological operations and false-positive reduction
(removal of opacities outside the lungs).

III. EXPERIMENTS AND RESULTS

We evaluated the system on the task of COVID-19 opacity
segmentation using a small COVID-19 dataset [14] containing
29 non-contrast CT scans from three different distributions,
from which 3,801 slices were extracted. Lungs and areas of
infection were labeled by two radiologists and verified by an
experienced radiologist. The given labels were of the lungs
and infection. The train-validation-test split was: 21 cases for
training, 3 cases for validation, and 5 cases for testing, chosen
at random.

We performed experiments with several values of λ, starting
with λ = 0; i.e., standard transfer learning via parameter
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initialization, up to λ = 50; i.e., a high penalty for deviation
from the learned weights, which can be considered as basically
freezing the encoder. Given a 3-D chest CT scan, the system
produced the correlated 3-D prediction mask for the lungs,
as well as the COVID-19 related infections. Once the 3-D
segmentation mask for the test set had been extracted, we
compared it to the ground truth (GT) reference mask for
the opacity class, in terms of Dice and Precision metrics.
Consistent pre- and post-processing stages were applied to all
the network solutions that were compared.

Figure 1 shows the average segmentation results for the
opacity class as a function of the regularization coefficient λ.
For the ImageNet experiments, both Dice and precision were
optimal at λ = 0. For the Med- and Med+Nat-pretrained-net
experiments, the segmentation performance improved up to a
certain optimal regularization weight. The best segmentation
results were attained with Med+Nat-pretrained-net, and λ = 8
was obtained as the optimal value. At λ = 8 the dice score
was improved by 5.5% from 0.724 (λ = 0) to 0.764, with a
p-value of 0.030. The precision was improved by 4.9% from
0.752 (λ = 0) to 0.789, with a p-value of 0.019.

These results demonstrate that using extra regularization
penalization for transfer learning overpowers initialization on
its own, since the source task and the target task’s distributions
are more similar. Thus, by using the regularization term, the
segmentation results can be improved in cases where the
transfer learning is from a source domain close to the target
domain. In cases where the transfer learning comes from a
source domain with a very different distribution than the target
domain, as in the case from natural images to non-contrast
chest CT images, it is better to allow deviation from the
learned weights.

Qualitative results are shown in Figure 2. For each input
slice, we see the CT slice and the segmentation results for
several values of λ obtained by using the Med+Nat as source
task. The given examples show the system prediction for
slices from three different test cases with different disease
manifestations, demonstrate its generalization capabilities. It
can be also seen that at λ = 8 the red and the yellow regions
are minimal compared to at λ = 0 and at λ = 50, indicates
the improved results of the optimal regularization term.

There are several published results on the same COVID-
19 dataset [14]. Wang et al. [15] suggested a Hybrid-encoder
transfer learning approach. Laradji et al. [16] used a weakly
supervised consistency-based strategy with point-level annota-
tions. Muller et al. [17] implemented a 3-D U-Net and using
a patch-based scheme. Paluru et al. [18] recently suggested an
anamorphic depth embedding-based lightweight model. The
reported Dice scores were 0.704 [15], 0.750 [16], 0.761 [17],
0.798 [18] and 0.698 [19]. Comparison here, however, is prob-
lematic due to different data-splits and different source tasks
used for transfer learning. We note, however, that our transfer
regularization approach is complementary to previous works
and can be easily integrated into their training procedure.

IV. CONCLUSIONS

This study described a transfer learning scheme based on
using the parameters of the source task as a regularization
term while learning the target task. We concentrated on
image segmentation problems that are handled by the U-
net architecture where the encoder and the decoder need
to be treated differently. We addressed the specific task of
segmenting COVID-19 lesions in chest CT images and showed
that adding an extra regularization term to the cost function
leads to improved segmentation results in cases of sufficient
similarity between the source and target tasks. The presented
method is general and can be incorporated in any instance
where transfer learning from the source task to the target task
is implemented.

ACKNOWLEDGMENT

The research was partially supported by the Israeli Ministry
of Science & Technology.

REFERENCES

[1] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A.W.M van der Laak, B. van Ginneken, and C. I.
Sánchez, “A survey on deep learning in medical image analysis,” arXiv
preprint arXiv:1702.05747, 2017.

[2] H. Greenspan, B. van Ginneken, and R. M. Summers, “Guest editorial
deep learning in medical imaging: Overview and future promise of an
exciting new technique,” IEEE Transactions on Medical Imaging, vol.
35, no. 5, pp. 1153–1159, May 2016.

[3] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.
Gotway, and J. Liang, “Convolutional neural networks for medical image
analysis: Full training or fine tuning?,” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1299–1312, May 2016.

[4] V. Cheplygina, M.n de Bruijne, and J. P.W. Pluim, “Not-so-supervised:
a survey of semi-supervised, multi-instance, and transfer learning in
medical image analysis,” Medical image analysis, vol. 54, pp. 280–
296, 2019.

[5] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on
weakly-supervised classification and localization of common thorax
diseases,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017.

[6] J. De Fauw, J. R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev,
S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, et al.,
“Clinically applicable deep learning for diagnosis and referral in retinal
disease,” Nature medicine, vol. 24, no. 9, pp. 1342–1350, 2018.

[7] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion:
Understanding transfer learning for medical imaging,” in Advances in
neural information processing systems, 2019.

[8] M. McCloskey and N. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” The Psychology of
Learning and Motivation, vol. 24, pp. 109–164, 1989.

[9] Xuhong Li, Yves Grandvalet, and Franck Davoine, “Explicit inductive
bias for transfer learning with convolutional networks,” in International
Conference on Machine Learning, 2018, pp. 2825–2834.

[10] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,” in International
Conference on Medical image computing and computer-assisted inter-
vention. Springer, 2015, pp. 234–241.

[11] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

[12] A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani,
B. Van Ginneken, A. Kopp-Schneider, B. A. Landman, G. Litjens,
B. Menze, et al., “A large annotated medical image dataset for the
development and evaluation of segmentation algorithms,” arXiv preprint
arXiv:1902.09063, 2019.

988



[13] N. Sagie, S. Almog, A. Talby, and H. Greenspan, “Covid-19 opacity
segmentation in chest ct via hydranet: a joint learning multi-decoder
network,” in Medical Imaging 2021: Computer-Aided Diagnosis. SPIE,
2021, vol. 11597.

[14] M. Jun, G. Cheng, W. Yixin, A. Xingle, G. Jiantao, Y. Ziqi, Z. Minqing,
L. Xin, D. Xueyuan, C. Shucheng, et al., “COVID-19 CT lung and
infection segmentation dataset,” Zenodo, Apr, vol. 20, 2020.

[15] Yixin Wang, Yao Zhang, Yang Liu, Jiang Tian, Cheng Zhong,
Zhongchao Shi, Yang Zhang, and Zhiqiang He, “Does non-COVID19
lung lesion help? investigating transferability in COVID-19 CT image
segmentation,” Computer Methods and Programs in Biomedicine, p.
106004, 2021.

[16] Issam Laradji, Pau Rodriguez, Oscar Manas, Keegan Lensink, Marco
Law, Lironne Kurzman, William Parker, David Vazquez, and Derek
Nowrouzezahrai, “A weakly supervised consistency-based learning
method for covid-19 segmentation in CT images,” in Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, pp. 2453–2462.
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