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Abstract—This paper proposes low latency online source sep-
aration in noisy environments. An approach based on weighted
prediction error dereverberation was recently proposed to solve
the degradation caused by using low latency online source
separation. Although this approach can also reduce noise by
increasing the number of microphones and separating the noise
as additional sources, the calculation cost prohibitively increases.
To solve this problem, this paper incorporates techniques used in
independent vector extraction (IVE) into the above conventional
approach. Because IVE can skip most of the calculations for
estimating noise by assuming that it is a stationary Gaussian,
our proposed method achieves effective and computationally
efficient noise reduction using many microphones. Experiments
in a noisy car environment show that our proposed online method
simultaneously separates sources and reduces noise with low
latency (< 12 ms) processing.

Index Terms—Blind source separation, blind dereverberation,
online, independent vector extraction, low latency

I. INTRODUCTION

Speech enhancement is helpful for such applications as
hearing aids and in-car communication systems, which trans-
mit passengers’ voices between the front and back seats
for comfortable conversations in a vehicle [1]. For speech
enhancement in such systems, we need to simultaneously
address two major problems: 1) real-time processing with little
delay, and 2) simultaneous reduction of interfering voices and
background noise.

To solve the above problems, we use online blind source
separation (BSS). Online BSS is a technique that separates in-
dividual source signals from current and past microphone array
inputs without any prior information about the source signals.
Independent vector analysis (IVA) [2] is a BSS approach that
works in the frequency domain. An advantage of IVA is that
it solves the frequency permutation problem without relying
on any post-processing, assuming that each source has time-
dependent and frequency-invariant magnitudes. Under this as-
sumption, a fast online BSS algorithm with rapid convergence
and low computational cost was successfully developed [3]
based on an auxiliary-function-based IVA [4], [5].

To achieve low latency processing, cascading weighted
prediction error (WPE) [6]–[8] based dereverberation with an
online-IVA has been effective [9]. With reduced reverberation,

we can substantially shorten the short time Fourier transform
(STFT) frames without seriously degrading the BSS perfor-
mance and greatly reduce the algorithmic delay [10]. Jointly
optimizing IVA and WPE can also achieve substantially higher
separation performance than simply cascading them [9], [11]–
[13].

One drawback of the above method is that it does not
consider background noise. We empirically expected to effec-
tively reduce noise by increasing the number of microphones.
However, the computational cost increases when the number of
microphones is large, which limits the method’s applicability
to online processing. To solve this problem, we incorporate
techniques used in a variant of IVA, namely, independent
vector extraction (IVE) [14]–[21], into the low latency online
BSS. By replacing IVA with IVE, we can optimally separate
sources that are much fewer in number than the number of
microphones and skip most of the calculation for estimating
the noise statistics. As a result, the proposed method can
achieve computationally efficient noise reduction using many
microphones. Joint IVE and WPE optimization was recently
presented for offline processing [22], [23]. In contrast, our
work is the first to give an online algorithm for IVE [20] and
to develop a method for optimizing it jointly with online-WPE.
We then evaluate our method’s performance by separation
experiments on two-speaker eight-microphone mixtures and
show that it effectively reduces background noise in real-time
with low latency (< 12 ms) in a noisy car environment.

II. PROBLEM FORMULATION

Suppose that N sources and M −N noises are captured by
M microphones1 and that the captured signals can be modeled
at each time t = 1, . . . , T and frequency f = 1, . . . , F in the
STFT domain:

x(f, t) =

LA−1∑
τ=0

A(f, τ)s(f, t− τ), (1)

where x(f, t) = [x1(f, t), . . . , xM (f, t)]T ∈ CM is
the vector containing the microphone signals, s(f, t) =

1This assumption is introduced for algorithm derivation, and in practice
the proposed method can perform noise reduction even in diffuse noise
environments, as shown by our experiments.
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TABLE I: Classification table of source separation.
Offline Online

w/o
WPE

IVA
[5]

IVE
[14], [15], [20]

Online-IVA
[3]

Online-IVE
proposed

w/
WPE WPE×IVA

[21]
WPE×IVE
[22], [23]

Online-
WPE×IVA

[9]

Online-
WPE×IVE
proposed

[s1(f, t), . . . , sM (f, t)]T ∈ CM is that containing N source
signals for n ∈ {1, . . . , N} and M − N noise signals for
n ∈ {N + 1, . . . ,M}, where (·)T denote the transpose.
A(f, τ) ∈ CM×M for τ = 0, . . . , LA−1 are the convolutional
transfer function matrices from the corresponding sources and
noises to the microphones, where LA is the order of convo-
lution. Our aim here is to estimate a separation matrix that
separates out individual source signals s1(f, t), . . . , sN (f, t)
from x(f, t) in an online approach with a short STFT
frame (= low algorithmic delay) for an over-determined case
(M ≫ N ). Note that it is unnecessary to extract noise signals
sN+1(f, t), . . . , sM (f, t).

III. PROPOSED ONLINE METHODS

We introduce our proposed methods by showing a classifi-
cation table for source separation in Table I. Although online-
IVA [3] and the online joint optimization of WPE and IVA
(referred to as “online-WPE×IVA”) [9] are already shown,
the computational cost increases to enlarge the number of mi-
crophones for extracting target signals in a noisy environment.
On the other hand in offline processing, IVE and joint opti-
mization of WPE and IVE can extract only target signals with
low calculation [15], [20], [22], [23]. However, their online
algorithms have not been shown. In this section, we propose
an online version of IVE (“online-IVE”) and an online joint
optimization of WPE and IVE (“online-WPE×IVE”). Since
online-WPE×IVE is upwardly compatible with an online-IVE,
in the remainder of this section, we mainly describe the model
and optimization algorithm of online-WPE×IVE.

A. Models of beamformers and source signals

To derive online joint dereverberation, source separation,
and noise reduction algorithms, we adopt almost the same
models of beamformers and source signals as those previously
used [22], [23], except for modifications required for coping
with online processing. First, we assume that the relationship
between x(f, t), and s(f, t) can be modeled using a convolu-
tional beamformer (CBF):

s(f, t) = W H(f)

(
x(f, t)
x(f, t)

)
∈ CM , (2)

x(f, t) = [xT(f, t−D), . . . ,xT(f, t−D − L+ 1)]T ∈ CML,
(3)

where W (f) ∈ CM(L+1)×M , is a coefficient matrix, (·)H
denotes the Hermitian transpose, and x(f, t) is a vector
containing a past observation. L is the CBF length, and D
is the prediction delay.

Similar to an offline IVE approach [23, Algorithm 2], we
decompose convolutional filter W (f) into dereverberation ma-
trix G(f) ∈ CML×M and separation matrix Q(f) ∈ CM×M :

y(f, t) = x(f, t)−GH(f)x(f, t), (4)

s(f, t) = QH(f)y(f, t), (5)

where W H(f) = QH(f)[IM ,−GH(f)], IM ∈ CM×M is an
identity matrix and y(f, t) ∈ CM is a dereverberated signal.
With reduced reverberation in y(f, t), Eq. (5) can perform
effective source separation even with short STFT frames.

Next, to derive an objective of the optimization, we intro-
duce the same probabilistic source models used in IVE [20]:

p({sn(f, t)}n,f,t) =
∏
n,f,t

p(sn(f, t)), (6)

p(sn(f, t)) = NC(0, vn(t)), (7)
vn(t) = 1, where n ∈ {N + 1, . . . ,M}. (8)

Equation (6) specifies mutual independence between the
sources, and NC(0, vn(t)) denotes a complex Gaussian dis-
tribution with a mean zero and variance vn(t). Noise signals
are assumed to be stationary Gaussian signals.

Under the above assumptions, given past and current micro-
phone signals Xt = {xm(f, t′)}f,t′≤t,m with forgetting factor
0 < β < 1, negative log-likelihood I becomes:

I(Xt)
c
=−2

∑
f

log
∣∣detQ(f ; t)

∣∣
+

1∑
t′≤t β

t−t′

∑
f,t′≤t,n

βt−t′
(
log vn(t

′) +
|sn(f, t′)|2

vn(t′)

)
,

(9)

where c
= denotes equality up to the constant terms, and Q(f ; t)

denotes the calculated Q(f) at time t.

B. Optimization by online approach

We use a recursive coordinate descent method to obtain
a local optimal solution of Eq. (9). At each frame, after
estimating y(f, t) and s(f, t) from x(f, t) based on Eqs. (4)
and (5) using Gt−1 and Qt−1 obtained in the previous frame,
we recursively update Vt = {vn(t)}n, Gt = {G(f ; t)}f , and
Qt = {Q(f ; t)}f , based on the following three minimization
steps:

Vt ← argmin
Vt

I(Xt;Gt−1,Qt−1,Vt), (10)

Gt ← argmin
Gt

I(Xt;Gt,Qt−1,Vt), (11)

Qt ← argmin
Qt

I(Xt;Gt,Qt,Vt). (12)

In the following, we describe the update equations for the
above steps.
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1) Update of Vt: IVE solves the permutation alignment of
the separated components in each frequency using a frequency-
independent source variance model. With the model, the
variances are updated at each time:

vn(t)←
1

F

F∑
f=1

|sn(f, t)|2 for n = 1, . . . , N. (13)

After calculating vn(t), we modify the amplitude of sn(f, t)
by applying a back-projection technique [24]. In what follows,
because we can independently update Gt and Qt for each
frequency bin, we drop frequency index f off to ease the
notation.

2) Update of Gt: To update Gt, Eq. (9) can be rewritten:

I(Gt) =
∑

n∈[1,M ]

∥(G(t)−R−1
n (t)P n(t))qn(t− 1)∥2Rn(t)

,

(14)

where Rn(t) = βRn(t− 1) +x(t)xH(t)/vn(t) and P n(t) =
βP n(t−1)+x(t)xH(t)/vn(t) are spatio-temporal covariance
matrices in a recursive form, qn(t) is the nth column of Q(t),
and ∥x∥2R = xHRx. Eq. (14) can be minimized when G(t)
satisfies the following equation that was also previously shown
[23, Algorithm 2]:

G(t)qn(t− 1) = R−1
n (t)P n(t)qn(t− 1) for all n. (15)

Now, let Gn(t) = R−1
n (t)P n(t) for n ∈ {1, . . . , N + 1}.

Then similar to online-WPE [7]–[9], Gn(t) can be recursively
updated based on the matrix inversion lemma [25]:

Kn(t)←
R−1

n (t− 1)x(t)

βvn(t) + xH(t)R−1
n (t− 1)x(t)

, (16)

R−1
n (t)← {R−1

n (t− 1)−Kn(t)x
H(t)R−1

n (t− 1)}/β,
(17)

Gn(t)← Gn(t− 1) +Kn(t){x(t)−GH
n(t− 1)x(t)}H,

(18)

where Kn(t) is the Kalman gain vector. Because Gn(t) takes
the same value for n ∈ {N + 1, . . . ,M}, here we skip the
calculation of Gn(t) for n ∈ {N +2, . . . ,M}. Then Eq. (15)
can be written:

G(t)Q(t− 1) =[G1(t)q1(t− 1), . . . ,GN (t)qN (t− 1),

GN+1(t)QN(t− 1)] (19)

where QN(t) = [qN+1(t), . . . , qM (t)] ∈ CM×(M−N). There-
fore, Eq. (14) can be minimized in an online update:

G(t)←[G1(t)q1(t− 1), . . . ,GN (t)qN (t− 1),

GN+1(t)QN(t− 1)]Q−1(t− 1). (20)

3) Update of Qt: To update Qt, the log likelihood can be
rewritten:

I(Qt)
c
=
∑
n,f

∥qn(t)∥
2
Σn(t)

− 2
∑
f

log
∣∣detQ(t)

∣∣, (21)

where Σn(t) is a covariance matrix used for optimization.
Here we calculate Σn(t) for n ∈ {1, . . . , N+1} by following
previous studies [3], [16]:

Σn(t)← αΣn(t− Lb) +
(1− α)

Lb

t∑
τ=t−Lb+1

y(τ)yH(τ)

vn(τ)
,

(22)

where we slightly modify the configuration of the recursive
update from Eq. (9), by setting a different forgetting factor
0 < α < 1 and introducing a block-based covariance update
with block length Lb. Because likelihood function (21) is
identical to that for a conventional IVE technique [15], [20],
we apply the same computationally efficient update equations
as IVE does. After initializing Q(t) = Q(t − 1) at each
frame, we update qn(t) using iterative projection [5] in each
n ∈ {1, . . . , N}:

qn(t)← (QH(t)Σn(t))
−1en, (23)

qn(t)←
qn(t)√

qH
n(t)Σn(t)qn(t)

, (24)

where en denotes the nth column of IM . Then we update the
noise part of filter Q(t) in the same way as previous work
[15], [20]:

QN(t)←
(
−(QH

S(t)ΣN+1(t)EN )−1(QH
S(t)ΣN+1(t)EM−N )

IM−N

)
,

(25)

where QS(t) = [q1(t), . . . , qN (t)] ∈ CM×N , EN and EM−N

are the first N and the remaining M − N columns of IM .
Since QN(t) can be obtained by a single step update that
doesn’t depend on the number of microphones, we can largely
reduce the computational cost especially when we have many
microphones.

4) Summary: The algorithm of online-WPE×IVE in each
t, f , and n is composed of the following four steps:

1) Calculate y(f, t), and s(f, t), using Eqs. (4) and (5).
2) Update vn(t) using Eq. (13).
3) Update G(f ; t) using Eqs. (16)–(18), Eq. (20).
4) Update qn(f ; t) using Eqs. (22)–(25).

We can easily implement online-IVE by treating G(f) in
Eq. (4) as a zero matrix and skipping the update of G(f)
in Eqs. (16)–(18). This algorithm is novel for our paper.

IV. EXPERIMENTAL EVALUATION

We evaluated the effectiveness of our proposed method, by
conducting a source separation experiment in a car with N = 2
and M = 8. We used set B of the ATR digital speech database
[26], which is composed of speech data from ten speakers (six
men and four women). By randomly selecting two different
speakers from the database and iterating each utterance so
that each signal is 20 seconds, we obtained 100 pairs of
source signals. Mixture signals um(f, t) for m ∈ {1, . . . ,M}
are generated by mixing source signals [s1(f, t), . . . , sN (f, t)]
after being convoluted with impulse responses. We measured
the impulse responses using a time-stretched pulse in a car.
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(a) Microphones (b) View inside car

Fig. 1: Experimental sound source and microphone layout

The recording environment is shown in Fig. 1. We set one
speaker on the driver’s seat, another on the front passenger’s
seat, and microphones on a map lamp in the car. Rever-
beration time2 T60 in the car was 48 ms. Noise signals
zm(f, t) for m ∈ {1, . . . ,M} were recorded in a running
car. Then we generated microphone signals x(f, t) by adding
mixture signals u(f, t) = [u1(f, t), . . . , uM (f, t)]T and noise
signals z(f, t) = [z1(f, t), . . . , zM (f, t)]T so that the input
signal-to-noise ratio (input-SNR) = 10 log10

∑
t |z1(f,t)|

2∑
t |u1(f,t)|2 dB

becomes a specified value. The sampling rate was 16 kHz.
In the experiment, we compared four online-methods:

online-WPE×IVA [9], online-IVE, online-WPE+IVE, and
online-WPE×IVE. Hereafter, we abbreviate “online-” to re-
duce redundancy. WPE+IVE can be implemented by cascad-
ing IVE after WPE [8]. WPE×IVA is equal to WPE×IVE
with N changed from 2 to 8 (= M ). Because WPE×IVA
outputs 8 signals including noises, we selected 2 target signals
using oracle information, i.e., based on correlation with the
reference signals. We set the frame length and the shift at
8 ms and 4 ms based on the upper limit of the respective
mouth-to-ear delays (= 12 ms) [27]. We took the average of
the source-to-distortion ratio (SDR), the source-to-interference
ratio (SIR), and the sources-to-noise ratio (SNR) as evaluation
criteria [28]. In this paper, we used source signals sn(f, t) as
reference for SDR and SIR. We used a square root Hanning
window for the STFT window by computational efficiency. We
set the other parameters {α, β, Lb, D, L} at {0.96, 0.9999,
2, 1, 4}, respectively. We initialized Q(f ; 0) and R−1

n (f ; 0)
as identity matrices, G(f ; 0), and Gn(f ; 0) as a zero matrix,
and Σn(f ; 0) as 10−5 × IM .

First, we evaluated the computational efficiency of our
proposed method. Table II shows the mean computation times
for 20 s of 8-ch input using python 3.7.7 on a computer with
an Intel Xeon Gold 2.4 GHz 1-core CPU. The total delay of
WPE×IVE was 11.8 ms (< 12 ms), including the algorithmic
delay (= 8 ms). Comparing WPE×IVA and WPE×IVE, the
latter reduced the calculation time from 5.5×104 s to 1.9×104
s, which results in sufficient real-time operation of WPE×IVE.

Next we evaluated the separation performance of the pro-
posed method. Table III compares the SDR improvements,
SIR improvements, and SNR with each input-SNR and the
online method. The improvement of SIR shows how much

2This is much longer than an STFT frame in our experiments.

TABLE II: computational efficiency and total delay in sepa-
rating 20-second signals (≒ 5000 frame)

Time [ms]
Online-methods WPE×IVA WPE×IVE

Calculation time 5.5 ×104 1.9 ×104
Calculation time for a frame (= 1⃝) 11.0 3.8
Algorithmic delay (= 2⃝) 8.0
Total delay (= 1⃝ + 2⃝) 19.0 11.8
Limit of delays [27] 12.0

TABLE III: Average SDR, SIR improvement, and SNR for
each online method: Scores in parentheses are 1.96×standard
error. Bold font shows top scores. † and †† mean that top score
method has a statistical difference from other methods at 10%
and 5% levels.

online-methods SDR imp. [dB] SIR imp. [dB] SNR [dB]
Input-SNR = 10 [dB]

WPE×IVA (w/ oracle) 8.23 (0.43) 23.60 (0.51) 7.16 (0.37)
IVE 5.74 (0.35) 21.41 (0.72) 4.89 (0.29)
WPE+IVE 6.12 (0.29) 21.65 (0.55) 5.07 (0.25)
WPE×IVE 7.61 (0.26)†† 22.26 (0.43) 6.42 (0.25)††

Input-SNR = 0 [dB]
WPE×IVA (w/ oracle) 10.23 (0.48) 21.25 (0.47) 4.28 (0.42)
IVE 7.58 (0.31) 21.85 (0.55) 1.51 (0.28)
WPE+IVE 9.43 (0.29) 21.66 (0.43) 3.30 (0.28)
WPE×IVE 10.77 (0.28)†† 21.19 (0.31) 4.63 (0.27)††

Input-SNR = -10 [dB]
WPE×IVA (w/ oracle) 10.32 (0.59) 17.18 (0.51) -4.00 (0.52)
IVE 7.42 (0.32) 18.48 (0.43) -7.16 (0.3)
WPE+IVE 10.51 (0.35) 18.99 (0.37) -4.15 (0.34)
WPE×IVE 11.74 (0.32)† 18.52 (0.28) -2.94 (0.32)†

interference was suppressed and SNR shows how much noise
was included. The SDR improvement is an overall evaluation
value that includes SIR and SNR. We treat WPE×IVA as
a reference because its real-time factor greatly exceeded 1.0
and it used oracle information for distinguishing the targets
from noise. When comparing WPE×IVE and WPE×IVA
(w/ oracle), the former achieved not necessarily higher but
almost comparable separation performance with much faster
calculations without post-processing. This is the advantage of
our proposed WPE×IVE. In addition, when comparing all the
IVE-based methods in all input-SNRs, we found no statistical
difference in the SIR improvement. However, there was a
significant difference in SDR improvement and SNR between
WPE×IVE and the other methods. In particular, the proposed
WPE×IVE reduced the SNR from -10 (= input-SNR) to -2.94
dB. This result suggests that using variance vn = 1 for noises
was effective for distinguishing the noise in the microphone
signal.

Finally, we show the convergence curve of the separation
performance. Fig. 2 compares the SDR improvements over
time for each online method. To observe the variation in
the SDRs over time, we calculated the SDRs every two sec-
onds without signals overlap. Our proposed method provided
the highest SDR improvement over almost all 20 seconds.
Although the difference of the SDR improvement between
WPE+IVE and WPE×IVE became smaller over time, there
was significant difference in the first two seconds in all the
input-SNRs.
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Fig. 2: Separation performance for each online method.

V. CONCLUSION

We proposed low latency online blind source separation in
noisy environment. This method jointly optimized dereverber-
ation, separation, and noise reduction with little algorithmic
delay (= 8 ms) and low computational cost per frame (=
3.8 ms). The experimental results confirmed that our proposed
online method reduced SNR from -10 to -2.94 dB with high
source separation performance in-car environments.
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