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Abstract— For estimating the relative transfer function (RTF)
of a speaker from noisy multi-microphone recordings, several
statistical methods have been proposed. The estimation accuracy
is different over frequencies, which mostly depends on the
frequency-dependent signal-to-noise ratio (SNR). Provided that
the low-SNR frequencies are identified, the corresponding values
of the estimated RTF can be replaced through interpolation
using the frequencies with high SNR. In this study, we explore
interpolation techniques based on the sparse reconstruction of
an incomplete RTF which is obtained when low-SNR values are
neglected. Compared to previous attempts where the approximate
sparsity of the time-domain representation of RTF (relative im-
pulse response) is exploited, in this paper, we use learned sparse
dictionaries trained on dense measurements of RTFs within a
confined area of the target speaker. These measurements are
obtained from the recently released MIRaGe database acquired
in a real room.

Index Terms— Room Impulse Responses, Relative Transfer
Function, Sparse Representations, Sparse Dictionaries, Dictio-
nary Learning

I. INTRODUCTION AND PROBLEM FORMULATION

Consider a speaker recorded in reverberant environment
using several microphones. The signal observed by the ith
microphone is described as [1]

xi(n) = {hi ? s}(n) + yi(n), (1)

in the time-domain, and approximately

Xi(k, `) = Hi(k)S(k, `) + Yi(k, `), (2)

in the time-frequency domain. Here, ? denotes the convolution
operator, and n, k, and ` stand for the sample, frequency, and
frame index, respectively. The speaker’s voice is represented
by s and S, while yi and Yi contain the other interfering
and noise signals. hi is the room impulse response (RIR)
characterizing the acoustic path between the speaker and the
ith microphone, and Hi is its frequency domain representation,
i.e., the acoustic transfer function (ATF).

By considering a pair of microphones i and j, i 6= j, the
observed signals can be described in a relative way as

xi(n) = si(n) + yi(n), (3)
xj(n) = {gij ? si}(n) + yj(n), (4)
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or

Xi(k, `) = Si(k, `) + Yi(k, `), (5)
Xj(k, `) = Gij(k)Si(k, `) + Yj(k, `), (6)

where si = {hi ? s} and Si = Hi(k)S(k, `) denote the
speakers signals as received on the ith microphone (also
referred to as the ith image of s), and gij is the relative impulse
response (ReIR) characterizing the relative difference between
si and sj , related to the ith microphone. The respective
frequency-domain counterpart of gij is Gij called the relative
transfer function (RTF) [2].

When the above transfer functions (or respective impulse
responses) are known, various spatial processors such as
MPDR, MVDR, and LCMV can be applied in order to separate
the desired speech from the noisy recordings [3], [4]. The
advantage of RTFs (ReIRs) is that they can be consistently
estimated from the microphone observations. Conventional
least-squares estimators (either time or frequency domain) can
be used when noise-free recordings are available (yi = yj =
0). When the noise is isotropic and stationary, a model-based
estimator from [5] can be applied to noisy recordings. When
the covariance of noise is known, the generalized eigenvalue
decomposition (GEVD) can be applied [6]. Some situations
with interfering directional sources can be handled using Blind
Source Separation (BSS) [7], [8], [9]. More recently, deep
learning-based approaches have been proposed in order to
classify time-frequency points according to the SNR [10],
which can be further used for the RTF estimation [11], [12].

The RTF estimators achieve different accuracy per fre-
quency channel, which mostly depends on the level of mis-
match between the assumed model or training set and the
observed data. For example, conventional least-squares es-
timators are sensitive to the frequency-dependent signal-to-
interference-plus-noise ratio (SINR). By assuming that knowl-
edge about the accuracy is available, the values of the estimator
of Gij(k), denoted as Ĝij(k), can be labeled either as good
or bad (or weighted according to a level of uncertainty). The
labeled estimator could be treated as incomplete, meaning that
the inaccurate values of Ĝij(k) are neglected or outweighted.
Then, an improved RTF estimate can obtained through recon-
structing the incomplete RTF in a sparse domain [13].

The success of this approach depends on several factors
where the most important one resides in the knowledge of an
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Fig. 1. Mean square error (MSE) between the RTFs estimated from clean and
noisy recording (the left y-axis) and the SINR (the right y-axis) as functions
of frequency.

appropriate sparsity domain. That is, the domain in which the
RTFs (respectively, the ReIRs) have sparse representations is
of primal interest. In our previous works such as [13], [14],
the time-domain was considered, which comes from the fact
that ReIRs, i.e. the time-domain representations of RTFs, are
approximately sparse (namely, have many coefficients that are
close to zero).

However, this hypothesis is not very accurate, especially,
in highly reverberated environments where the ReIRs have
long tails. To obtain a better sparsity domain, a learning-based
approach can be used in order to find a sparse dictionary that
is useful in the given acoustic environment (and likely not
elsewhere) [15].

This work is focused on learning such dictionaries. In the
following section, the problem of sparse reconstruction of
incomplete RTFs using a dictionary is formulated. Section 3
describes our practical approach to learn sparse dictionaries of
this purpose using the standard K-SVD algorithm [16]. Section
4 reports results of an experimental study carried out using
the recently released MIRaGe dataset that provides detailed
measurements of ReIRs in a real room [17]. Conclusions are
drawn in Section 5.

II. SPARSE RECONSTRUCTION OF INCOMPLETE RTFS

Let us begin with an example where a speaker is recorded
by two microphones from a distance of 1 m; the microphone
inter-distance is 8 cm; the recording is 2 s long; the sampling
frequency is 16 kHz. Using the clean speech recording and
the least-squares procedure, the ReIR of length 1024 taps is
estimated. The Discrete Fourier transform (DFT) of the ReIR
is considered as the ground truth RTF. Then, another speaker
and bubble noise are added to the recording so that the global
SINR is 5 dB. The ReIR is estimated using least-squares from
the noisy data, and the corresponding RTF is compared with
the ground truth RTF.

Figure 1 depicts a joint plot of the frequency-dependent
mean square error (MSE) between the RTFs (the left y-axis)
and the frequency-dependent SINR (the right y-axis). The
figure demonstrates a clear correspondence between the SINR
and the accuracy of the least-squares RTF estimator. When the
SINR is sufficiently high, the MSE tends to be small, and vice
verse.

The example motivates us for interpreting the noisy RTF
estimator as an incomplete RTF measurement. We will work
with the assumption that information about SINR is available
so that the set of frequencies for which the SINR is “suf-
ficiently” high is known; let the set of such frequencies be
denoted by S. We admit that such information provides a
strong knowledge and might be difficult to obtain. Neverthe-
less, the purpose of this work is to focus on the other important
problem: Can we infer the unknown values of the incomplete
RTF (iRTF)?

Let D be an L×M matrix representing a dictionary, where
L corresponds to the length of ReIRs which is equal to the
DFT resolution, and M is the number of atoms in the dictio-
nary. When D is an appropriate sparse dictionary, the iRTF
can be completed through finding its sparsest representation
in D, that is, by solving

min
x∈RM

‖x‖0 s.t. Fk,:Dx = Ĝij(k), k ∈ S, (7)

where F denotes the L× L DFT matrix, Fk,: denotes its kth
row, and ‖x‖0 is equal to the number of nonzero elements in
x. Once such x is found, the reconstructed ReIR is equal to
Dx.

The complexity of (7) is known to be NP-hard, therefore,
several convex relaxations are considered in the literature
[18] such as basis pursuit, basis pursuit denoising (BPDN),
and LASSO. In this work, we consider the following convex
program

min
x∈RM

‖x‖1 s.t. |<{Fk,:Dx− Ĝij(k)}| ≤ δ, k ∈ S,
(8)

|={Fk,:Dx− Ĝij(k)}| ≤ δ, k ∈ S,

where <{·} and ={·} denote the real and imaginary parts of
the argument, ‖ · ‖1 denotes the `1 norm, and δ ≥ 0 is a
threshold parameter.

The latter optimization problem corresponds to `1-
minimization with `∞ constraints. For δ = 0, it corresponds
with the basis pursuit formulation, and it can be reformulated
as a (real-valued) linear programming problem for every δ ≥
0 [19]. Compared to BPDN or LASSO, the constraints in
(8) guarantee that the values of the reconstructed RTF do
not differ from those of the incomplete one by more that
δ, simultaneously for every k ∈ S . This provides a more
controlled solution than with LASSO [20].

III. DICTIONARY LEARNING

The choice of the dictionary D plays a crucial role in
sparse reconstruction. In our problem, every RTF that should
be reconstructed from iRTF should have a sufficiently sparse
representation in D. A general-purpose D is hard to find and,
most likely, such dictionary does not exist.

In previous works, the typical time-domain structures of
ReIRs, i.e. their approximate sparsity due to exponential decay,
have been exploited [13]. This corresponds with the choice
D = IL, where IL is the L × L identity matrix. Each atom
(column of D) represents an integer delay filter, so ReIRs
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Fig. 2. Full sets of 16416 ReIRs (all target positions within the volume, 4 microphone pairs - the central mic being the reference one) and the atoms of
dictionaries with 64, 128, 256, and 512 atoms (each of length 64) derived from the full sets using K-SVD (104 iterations starting from the identity matrix).
The global delay (anti-causal part) of the ReIRs is 10 taps.

are assumed to be sparse linear combinations of the delays.
A more advanced approach is when D involves also some
fractional-delay filters (so-called “oversampled domain” ) or
even corresponds to the continuous dictionary involving all
fractional-delay filters [14].

However, the efficiency of the time-domain dictionaries
is limited, especially, due to the reverberation (most of the
ReIRs’ coefficients are nonzero). More efficient dictionaries
tailored to the particular acoustic scenario might be learned
from on-site measurements. Such measurements must involve
a sufficient number of ReIRs corresponding to potential po-
sitions of the target source. In this paper, we conduct such
experiment with the recently released MIRaGe database.1

MIRaGe contains measurements of excitation signals played
by a loudspeaker from positions that form a dense grid
within a 46 × 36 × 32 cm volume (the speaker’s area).
The setup is situated in an acoustic laboratory which is a
6 × 6 × 2.4 m rectangular room with variable reverberation
time. Three reverberation levels with T60 equal to 100, 300,
and 600 ms are provided. The speaker’s area involves 4104
positions which form the cube-shaped grid with spacing of
2-by-2 cm over the x and y axes and 4 cm over the z axis.
Also, MIRaGe contains a complementary set of measurements
that provide information about the positions placed around the
room perimeter with spacing of ≈1 m, at a distance of 1 m
from the wall. These positions are referred to as the out-of-grid
positions (OOG) and can be used for simulating interfering
sources. All measurements were recorded by six static linear
microphone arrays (5 mics per array with the inter-microphone
spacing of −13, −5, 0, +5 and +13 cm relative to the central
microphone); for all details about the database, see [17].

For our experiment, we use the white noise excitation
signals to compute ReIRs of length 8192 taps using least-
squares; the anti-causal part, referred to as global delay, has
128 taps. The ReIRs are then truncated to the selected length
L and global delay 10. In the experiments, we consider Arrays
1 through 3, and the reference microphone is the central

1https://asap.ite.tul.cz/downloads/mirage/

microphone in each array. Hence, we have 4× 4104 = 16416
ReIRs for each array and for each T60 setting to learn the
dictionary.

As the learning method, we use the standard K-SVD al-
gorithm [16]. The ReIRs are truncated so that L = 64 and
the global delay is 10 taps. The size of the dictionary is
M = 64, 128 ,256, and 512, respectively. The number of
K-SVD iterations is set to 104.

The resulting dictionaries for Arrays 1 through 3 when
T60 = 100 ms are visualized in Fig. 2. In the first column,
the figures show all ReIRs in the corresponding training
set. The main peaks (direct-path delay) of all ReIRs are
concentrated around tap 10, which is the global delay. For
Array 1, the position of the main peak is within taps 8-16
while, for Arrays 2 and 3, it is 9-14 and 9-13, respectively.
This is due to the growing distance of Arrays 1 through 3,
hence, the decreasing range of the angle of arrival. Also, the
early reflection and reverberation tails of the ReIRs are more
intensive for more distant arrays. The atoms of the dictionaries
with 64, 128, 256, and 512 atoms are shown in columns 2
through 5. For small M , the atoms mainly involve the main
peaks of the ReIRs around tap 10. However, with growing
M , there is an increasing number of atoms having a more
complicated structure, probably involving early reflections and
reverberation tails of the ReIRs.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The experimental scenarios were realized using the MIRaGe
database. For a given array of microphones, T60 setting, and
dictionary D, we carry out the following experiment: The
target (female) speech of length 10 s is played from a selected
position within the target volume using RIRs of length 8192
taps. Similarly, an interfering speaker (male) is simulated from
the OOG position #24. The spatial images of the speakers’
utterances are summed together with a babble noise sequence.
The initial SINR computed over the entire sequence is nearly
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0 dB, depending on the target speaker position, microphone,
array, and T60.

Then, a 2 s long interval of the mixed signals is used to
estimate the RTFs of microphones #1, 2, 4, and 5 with respect
to microphone #3 of each array with global delay 10; the time-
domain least-squares approach is used; the estimated ReIR is
transformed using FFT to obtain the estimated RTF. As shown
in Fig. 1, the accuracy of this estimator highly depends on
the frequency-dependent SINR (good in frequencies where the
target source is dominant; very poor where the SINR is small).

To define the iRTF, S is chosen according to the known
frequency-dependent SINR. Namely, S consists of p percent
of the frequency bins with the highest SINR. Then, the new
RTF estimate is reconstructed from the iRTF by solving (8).
The result is compared with the ground-truth RTF in terms of
the mean-square error (MSE).

The following approaches and estimators are compared:
DICT and TIME correspond to the noisy estimate of RTF
reconstructed, respectively, in the dictionary and time domain.
Oracle variants of these methods perform the reconstruction
using the same set S, however, the iRTF contains coefficients
of the ground-truth RTF. Next, NearestNeighbour is a brute-
force approach that utilizes the full set of ground-truth RTFs
as prior knowledge. It outputs the RTF from the full set whose
coefficients, restricted to S, are closest to the noisy-estimated
iRTF in the mean square sense. Finally, CENTRAL stands
for a naı̈ve approach that always gives the ground-truth RTF
corresponding to the central position of the grid; RANDOM
takes the ground-truth RTF for a random position within the
grid.

In the following, we show and discuss results of the experi-
ments under various settings. The results are averaged over all
possible 4104 positions of the target source within the grid,
over microphones #1, 2, 4 and 5. In case of DICT and TIME,
the iRTF is estimated using 2 s long intervals of noisy signals,
i.e., there are 5 different estimates from the 10s long signals;
the average is taken also over these estimates.

In particular, we focus on the averaged MSE as a function of
the percentage of frequency bins p included in S. For p close
to 100%, DICT and TIME approach the original RTF estimates
obtained from the noisy signals. The estimators coincide when
p = 100% and δ = 0. Similarly, oracle DICT and oracle TIME
approach the ground true RTF when p is close to 100%, so
they achieve MSE that is close to 0.

B. Results

Figure 3 shows results for Array 1, T60 = 100 ms, and
M = 512. Oracle DICT yields a steeply decreasing MSE
with growing p, and the decrease is significantly steeper than
that of Oracle TIME. This shows that the dictionary has
been trained well because every RTF can be reconstructed
accurately knowing very few values. While this gives the
proof of concept, the behavior of DICT and TIME shows the
practical utility as they are using the values of the noisy RTF
estimate.
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Fig. 3. Comparison of methods in terms of the averaged mean square error.
Solid lines correspond to δ = 0; dashed lines correspond to δ = 0.1.

The MSE by DICT and TIME is minimal when p is between
10 and 30%, depending on the approach and δ. These values
correspond with the approximate number of frequency bins
where the target speech is dominant and where the RTF
estimate is accurate enough. The lowest (best) MSE by DICT
is smaller than that of TIME, which points to the efficiency
of the dictionary. For the higher values of p, the iRTF is
contaminated by significantly biased estimates of the RTF,
which causes the growth of the MSE. DICT with δ = 0
appears to be very sensitive to such values, nevertheless, it
is quite robust when δ = 0.1.

Finally, the naı̈ve approaches CENTRAL and RANDOM do
not bring any quality to the RTF estimation compared to the
other methods. The brute-force NearestNeighbour yields good
performance when p = 30% and shows a robustness when
p is higher. On the other hand, it yields large MSE for the
critically low values of p < 20%, which is of greater interest.

Figure 4 compares DICT and TIME and their oracle variants
when T60 is varying; the array index is 1; δ = 0.1; M = 512.
Note that with δ = 0.1, oracle methods do not achieve zero
MSE as p = 100%, because the solution of (8) slightly
deviates from the ground-truth RTF. The behaviour of DICT
and TIME is similar to that in Fig. 3, and, as could be expected,
the best achieved MSE tends to be higher (worse) as T60
grows. Interestingly, the oracle methods exhibit the opposite
behavior: For a given value of p, the MSE tends to be lower
when T60 is higher.

Figure 5 compares the same methods when the distance
between the speaker and microphone array varies from 1
to 3 m; T60 = 300 ms, M = 512. The methods behave
consistently with the results in Figure 3; the minimum MSE
achieved by DICT and TIME is higher when T60 = 300 ms.
The compared methods yield overall higher MSE when the
array-source distance is 3 m (Array 3) than when it is 1 or
2 m.
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Fig. 4. Mean square error versus percentage shown for different T60 settings
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Fig. 5. Mean square error as a function of percentage for different distances
of the microphone array (array index equals the distance in meters) for T60 =
300 ms. Solid line: Array 1, dashed lines: Array 2, and dashdotted lines: Array
3.

V. CONCLUSIONS

We have shown that a sparsity domain of RTFs can be
learned for a specific room, target source area, and a micro-
phone array position. Provided that high-SNR frequencies can
be identified, conventional RTF estimators can be used to com-
pute an incomplete RTF estimate. A complete RTF estimate
can be obtained through finding the sparsest representation of
the incomplete RTF in the sparsity domain. The experiments
have shown that this approach can yield significantly more
accurate RTF estimates than the conventional methods when
the RTF is estimated from noisy recordings.
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