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Abstract—We propose an end-to-end acoustic scene analysis
framework with distributed sound-to-light conversion devices
called Blinkies. Blinkies transmit sound information as the
intensity of an on-board light-emitting diode (LED). A video
camera can then easily collect acoustic information by capturing
the LED intensities from multiple Blinkies distributed over a
large area. However, the transmitted signal is band-limited owing
to a video camera’s frame rate, typically 30 frames per second.
We aim to optimize the sound-to-light conversion process for
acoustic scene analysis under this bandwidth constraint. In light-
signal propagation in air, signal degradation due to physical
constraints such as light attenuation and noise will also occur. We
model the physical constraints as differentiable physical layers,
which enable us to train two deep neural networks (DNNs) for
sound-to-light conversion and acoustic scene analysis in an end-
to-end manner. Simulation experiments of acoustic scene analysis
using a DCASE 2018 dataset show that the proposed framework
can produce a higher accuracy than the previous framework
with Blinkies. This result suggests the suitability of Blinkies for
acoustic scene analysis.

Index Terms—Blinky, Sound-to-light conversion, Deep learn-
ing, Differentiable physical layer

I. INTRODUCTION

Interest in acoustic scene analysis has recently increased,
and many workshops and competitions have been held [1],
[2]. Acoustic scene analysis is aimed at recognizing activities,
such as “cooking,” “vacuuming,” and “watching TV,” or de-
termining what is going on, such as “being on a bus,” “being
in a park,” and “meeting with people,” from acoustic informa-
tion [3]. To analyze acoustic scenes with high performance,
spatial information is also important in addition to spectral
information. The spatial information is obtained using multiple
microphones at the same time, that is, a distributed microphone
array [4], [5]. A simple way of using spatial information for
acoustic scene analysis is to localize sound sources. However,
even when there is a single source, source localization may be
difficult in a real environment because of background noise,
reverberation, and reflection. Furthermore, an acoustic signal
generally includes multiple sound sources, making it necessary
to carry out more complex operations, such as estimating the
number of sound sources.

To overcome these difficulties, Imoto and Ono proposed the
use of the spatial cepstrum [6]. The spatial cepstrum is a robust
and efficient feature for extracting spatial information with a
distributed microphone array. In the calculation of the spatial
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cepstrum, the average sound power for each microphone chan-
nel at a given time is used rather than the amplitude for each
frequency. On the basis of the idea to employ sound power as
a feature for acoustic scene analysis, we previously developed
a sound-to-light conversion device called a Blinky [7]-[10].
The use of Blinkies can solve technical challenges in real-
time acoustic sensing by using a distributed microphone array,
i.e., cable connection with wired communication, network
bandwidth limitation through wireless communication, or the
synchronization of signals recorded using microphones [11].
In a previous framework using Blinkies, a Blinky measured a
sound signal using a microphone and calculated its power on
the device. In accordance with the sound power, the Blinky
modulated the intensity of an on-board light-emitting diode
(LED). Finally, a video camera was used to synchronously
capture LED intensities from multiple Blinkies distributed
over a large area. However, signal degradation due to light
attenuation and noise will occur in the light-signal propagation
in air. Also, captured signals will be strongly band-limited
because of the limited frame rate of cameras, typically 30
frames per second. Furthermore, important acoustic features
will vary depending on the scene and situation that we want
to analyze.

Because of such a situation, our aim is to learn the optimal
sound-to-light conversion process in Blinkies as an alterna-
tive to transmitting sound power information. To realize this
aim, in this paper, we propose an end-to-end acoustic scene
analysis framework with Blinkies. In the proposed framework,
the light-signal propagation in air and camera responses are
modeled as differentiable physical layers. These physical lay-
ers enable us to obtain appropriate signal transformations in
Blinkies by using a data-driven approach while considering
the physical constraints and the accuracy of acoustic scene
analysis. Namely, we can train two deep neural networks
(DNNs) with an end-to-end approach: an encoding network
that transforms a sound signal measured via a microphone
into a signal to be transmitted by an LED and a scene analysis
network that estimates the acoustic scene using captured LED
intensities.

We performed a simulation experiment of acoustic scene
classification using the DCASE 2018 Challenge Task 5 dataset
to evaluate the effectiveness of the proposed framework. Ex-
perimental results show that the proposed framework enables
us to obtain a higher classification accuracy than a previous
framework with Blinkies.
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II. SOUND-TO-LIGHT CONVERSION DEVICE BLINKY

The use of Blinkies enables us to avoid complicated process-
ing, such as synchronization, in the signal acquisition using
a distributed microphone array. In this section, we briefly
summarize an acoustic sensing procedure with Blinkies and
the aim of this study.

A. Acoustic Sensing with Blinkies

Acoustic sensing with Blinkies and a video camera consists
of three parts: sound-to-light conversion in each Blinky, signal
transmission by light, and capturing the LED light of Blinkies
by a video camera (see Fig. 1).

1) Sound-to-Light Conversion: Letn, Fs ,, x[n], and B be
the discrete-time index, the sampling frequency corresponding
to n, the microphone signal, and the audio buffer size, respec-
tively. From the signal z[n], the sound power measurement
u[n] is computed as

(1

um—{éziwm—3+m nmod B =0

u[n — 1] otherwise

To efficiently encode sound power measurements u[n] as LED
intensities, we map u[n] using a nonlinear function (-). The
function o(-) was designed so that it maximizes the entropy
of ¢(u[n]) [10]. Then, the actual emitted light intensity I(¢)
at continuous time ¢ is given by

1(t) = e(u[[tF;n]]), )

where |-| indicates the floor function.

2) Signal Transmission by Light: After the sound-to-light
conversion, LED light from Blinkies propagates in air, and
a video camera captures it. The LED light intensity at the
camera is affected by attenuation a depending on the angle and
distance between each LED and the video camera. In addition
to this attenuation, ambient light is added to the light intensity
as a positive bias b. For these reasons, the radiant power
density at an imaging sensor on the camera, i.e., irradiance
E(t), is calculated using attenuation a, bias b, and noise € as

E(t)=al(t)+b+e 3)

3) Capturing Light of Blinkies by Video Camera: An imag-
ing sensor on a camera captures irradiance E. The camera then
encodes it as a video file. Irradiance F is integrated over the
time, which depends on the frame rate Fj ,, of the camera.
This process can be written as

m/Fs m
mw:/ B(t)dt, @
(mfl)/FS,m

where m is the discrete-time index for video frames and X [m]
is the energy density. Finally, the captured pixel value p is
given by

plm] = f(X[ml), (5)

where f is a function combining the sensor saturation s(-)
and the camera response function (CRF) h(-). The CRF
represents the processing in each camera that makes the final

image appear better. One of the typical CRFs is the Gamma
correction. It converts sensor output v[m| = s(X[m]) so that
p[m] = (v[m])*/7 with v = 2.2. Because industrial cameras
usually provide raw video frames that directly store sensor
output v[m], the nonlinear transform by the CRF can be
avoided and we can assume p[m]| = v[m)].

B. Scenario

In this paper, we assume that Blinkies placed at fixed
locations record acoustic signals and a video camera located
at a fixed location captures their LED intensities. Here, we
assume that their spatial positions are given. We will discuss
how to estimate the spatial positions of Blinkies in another
paper. Because of the nonlinear mapping in eq. (2), the
propagation in eq. (3), and the camera response in eqs. (4)
and (5) such as the Gamma correction, the captured pixel
value p differs from the actual sound power u measured by
Blinkies. Furthermore, important acoustic features for acoustic
scene analysis will vary in accordance with the scene labels
we want to attach to sounds or the ambient sound type and
volume. Therefore, the sound-to-light conversion based on the
sound power in the previous framework with Blinkies might
not be optimal for transmitting sound information by light or
for acoustic scene analysis.

To overcome these issues with a data-driven approach, we
propose an end-to-end acoustic scene analysis framework with
Blinkies in the next section.

III. PROPOSED FRAMEWORK

Figure 2 shows the proposed end-to-end acoustic scene
analysis framework. In the proposed framework, we have two
DNNs: an encoding network that converts recorded signals
into signals that can be effectively transmitted and are appro-
priate for scene analysis, and a scene analysis network that
performs scene analysis. To train these DNNs in an end-to-
end manner, we model the light propagation between Blinkies
and a camera, and camera responses as differentiable physical
layers.

A. Differentiable Physical Layers

Differentiable physical layers are differentiable models of
physical phenomena that can be incorporated into DNNs. They
enable DNNs to consider physical phenomena.

1) Light Propagation Layer: A light propagation layer is
a model of the signal transmission between a Blinky and a
camera (see Sec. II-A2). Since eq. (3) is differentiable, we
calculate the following equation in this layer:

yln] = azxfn] +b+e (6)

where z[n] and y[n] are 1D signals input to this layer and
output from this layer, respectively. We assume that attenuation
a is inversely proportional to the square of the distance
between a Blinky and a camera, and e follows a normal
distribution. b can be calculated from the pixel value p when
the corresponding LED is not lit.
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Fig. 1: Process of acoustic sensing with Blinkies
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Fig. 2: Proposed end-to-end acoustic scene analysis framework

2) Camera Response Layer: A camera response layer is a
model of the integration in eq. (4) on a camera sensor (see
Sec. II-A3). This integration can be interpreted as a sampling
operation with low-pass filtering. For this reason, the camera
response layer resamples an input signal z[n] to the camera
frame rate Fj ,, using

y[m] = resample(z[n]), (7)
where resample(-) indicates the resample operation. Since
most cameras have a frame rate of 30 fps, we set F ,, to
30 Hz in this work. Note that the nonlinear transform by a
CRF can be avoided by using raw video frames. Hence, we
do not consider CRFs in the camera response layer.

B. Network Architecture

As shown in Fig. 2, there are two subnetworks in the
proposed framework: an encoding network that transforms a
sound signal into a signal transmitted by LED light and a scene
analysis network that performs acoustic scene analysis. For the
training of these networks, the light propagation and camera
response layers are located between these two networks.

For the encoding network, we employed a 1D convolutional
neural network (CNN) [12], where we did not consider hard-
ware limitations of Blinkies in this paper. A 1D CNN is also
adopted in Wave-U-Net, which transforms acoustic signals into
other signals, and its effectiveness has been confirmed [13].
In the encoding network, we downsample microphone signals
using six 1D strided convolution layers with a kernel size of
3, a stride of 2, and a padding of 1. In addition, two 1D
convolution layers with a kernel size of 3 and a padding of 1
are inserted before each strided convolutional layer.

We adopted a simple VGG-like architecture with 1D con-
volution layers for the scene analysis network [14]. Similarly
to the encoding network, downsampling layers in this network
are replaced with 1D strided convolution layers with a kernel
size of 3, a stride of 2, and a padding of 1. The depth of the
network is 4, and the resulting feature map is transformed by
a global average pooling layer into a 1D vector. The vector is
fed into a linear layer to obtain the final scene analysis results.

Fig. 3: Arrangement of microphone arrays [17]

IV. SIMULATION

We evaluated the effectiveness of the proposed framework
by an acoustic scene analysis experiment with the DCASE
2018 Challenge Task 5 development dataset [15], [16].

A. Simulation Conditions

The DCASE 2018 Challenge Task 5 dataset is a derivative
of the SINS dataset [17]. It contains a continuous recording
of one person living in a vacation home for one week. Figure
3 shows the arrangement of the 13 microphone arrays used
to construct the SINS dataset. Although the DCASE 2018
Challenge Task 5 dataset consists of a development dataset and
an evaluation dataset, we used only the development dataset.
This is because the evaluation dataset has no information on
which microphone recorded each clip in the evaluation dataset.
For this reason, we divided the development dataset into three
subsets for training, validation, and testing. This partitioning
was performed in accordance with a list for cross-validation
provided with the dataset.

Sound clips in the DCASE 2018 Challenge Task 5 devel-
opment dataset were recorded with four microphones called
Nodes 1-4 (see Fig. 3). Their length and sampling frequency
are unified to 10 s and 16 kHz, respectively. In these sound
clips, we utilized clips recorded by Nodes 2, 3, and 4 for this
simulation, because the number of clips recorded by Node 1
is different from those recorded by the other nodes.
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We prepared three encoding networks and fed clips recorded
by Nodes 2, 3, and 4 into the networks. Signals transformed
by the networks and propagated through the differentiable
physical layers were concatenated and fed into the scene
analysis network, where we assumed that a camera was located
and fixed at the center of the living room, as shown in Fig. 3.
Under this assumption, the distances between the camera and
Nodes 2, 3, and 4 were set to 1.13, 1, and 1.62, respectively,
with the distance between the camera and Node 3 being
1. These networks were trained with 200 epochs using the
training subset and well-known cross-entropy loss. Here, the
Adam optimizer [18] was utilized for optimization, where the
parameters in Adam were set as « = 0.001,3; = 0.9, and
B2 = 0.999. The learning rate o was multiplied by 1/10 when
the number of epochs reached 100 and 150. The method by He
et al. [19] was used for initializing the network. The validation
subset was used to check for the overlearning of the networks.

We compared the following four frameworks:

(a) VGG 2D with log-mel spectrogram calculation and loss-
less transmission (Raw signal / Log-mel energy + VGG
2D in Table I),

(b) VGG 1D without any preprocessing and lossless trans-
mission (Raw signal / VGG 1D in Table I),

(c) Blinky’s power calculation in II-A1 + physical layers +
VGG 1D (Power / VGG 1D in Table I),

(d) The proposed end-to-end framework, i.e., the CNN-based
encoding network + physical layers + VGG 1D (CNN /
VGG 1D in Table I).

Note that frameworks (a) and (b) require a wide bandwidth
for transmitting raw signals, but frameworks (c) and (d) do
not.

B. Results

Table I shows the classification accuracy for the test subset
of the four frameworks. From the table, we can confirm that
the proposed framework can achieve a higher accuracy than
a non-end-to-end framework considering the same physical
phenomena (i.e., “Power / VGG 1D”). In addition, the accu-
racy of the proposed method was comparable to that of “Raw
signal / VGG 1D”, while the use of the typical DNN-based
approach for acoustic scene analysis, i.e., “Raw signal / Log-
mel energy + VGG 2D,” provided the highest accuracy among
the four frameworks. Note that both “Raw signal / VGG
1D” and “Raw signal / Log-mel energy + VGG 2D” assume
an unrealistic situation where distributed microphone arrays
are synchronized and high-capacity lossless transmission is
possible. Hence, this result suggests the suitability of the
proposed end-to-end framework with Blinkies for acoustic
scene analysis in practical situations.

More detailed classification results are shown in Fig. 4 as
confusion matrices, where each element represents the number
of sound clips whose true label is shown on the vertical axis
and the predicted label is shown on the horizontal axis. By
comparing Figs. 4 (b) and 4 (c), we can see that the number
of misclassifications, especially of the cooking, dishwashing,
and eating classes, increased owing to the signal propagation

TABLE I: Transmission bandwidth and accuracy for each
framework. “Raw signal / Log-mel energy + VGG 2D”
and “Raw signal / VGG 1D” require a wide bandwidth
for transmitting raw signals, but conventional and proposed
frameworks do not.

. Transmission
Encoder / Classifier Bandwidth per Mic. Accuracy
Raw signal / Log-mel energy + VGG 2D 16000 Hz 97.00%
Raw signal / VGG 1D 16000 Hz 90.57%
Power / VGG 1D (Conventional) 30 Hz 81.18%
CNN / VGG 1D (Proposed) 30 Hz 90.01%

True label
True label

g

Predicted label Predicted label

(b) Raw signal / VGG 1D

(a) Raw signal / Log-mel energy +
VGG 2D

@

3)

@)

O]
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)
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(c) Power / VGG 1D
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)
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@

Predicted label

(d) CNN / VGG 1D

Fig. 4: Confusion matrices for acoustic scene classification.
Class labels are (1) absence, (2) cooking, (3) dishwashing, (4)
eating, (5) other, (6) social activity, (7) vacuum cleaner, (8)
watching TV, and (9) working.

process. The proposed end-to-end framework can prevent this
performance degradation, as shown in Fig. 4 (d). This figure
illustrates that the proposed framework classified 9 out of 10
classes with a higher accuracy than “Power / VGG 1D.”
Figure 5 shows examples of feature maps, i.e., outputs
from camera response layers, obtained by “Power / VGG
1D” and “CNN / VGG 1D,” where Fig. 5 (a) shows feature
maps for a sound clip labeled “vacuum cleaner” and Fig. 5
(b) shows those for a sound clip labeled “social activity.”
As shown in this figure, the feature maps obtained by the
proposed framework were different from the sound power
obtained by the conventional framework. In the case of vacuum
cleaner, the sound of a vacuum cleaner was heard continuously
and the proposed framework almost always produced high
feature values for Nodes 2 and 3. By contrast, in the case of
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(b) Social activily

Fig. 5: Examples of feature maps. Top of each subfigure
shows feature map of “Power / VGG 1D,” and bottom of
each subfigure shows feature map of “CNN / VGG 1D.” The
horizontal axis shows the discrete time index m (video frame
index).

social activity, a man talked with a woman and the proposed
framework produced high feature values for Nodes 2 and
3 when their voices were loud. In addition, the proposed
framework yielded a lower feature value for Node 4 when it
provided a higher feature value for Nodes 2 and 3. For these
reasons, it is considered that the proposed framework trained
encoding networks yielding a high feature value for Nodes 2
and 3 and a low feature value for Node 4 when a meaningful
sound for classification was given.

V. CONCLUSION

In this paper, we proposed an end-to-end acoustic scene
analysis framework considering the physical signal propaga-
tion process between Blinkies and a camera. In the proposed
framework, the use of differentiable physical layers that model
physical phenomena as differentiable equations enables us
to consider physical constraints in DNNs. As a result, we
can train DNNs by an end-to-end approach and can obtain
appropriate signal transformations in a data-driven manner.
Experimental results showed that the proposed framework
provided a higher accuracy than the previous framework with
Blinkies for the DCASE 2018 Challenge Task 5 development
dataset. The accuracy of the proposed method was compara-
ble to that of a framework that does not consider physical
constraints.

This result indicates that the end-to-end training can give
us more effective encoding in sound-to-light conversion and
estimating the acoustic scene, even with the limitation of
camera frame bandwidth. In future work, we will consider
more practical conditions, e.g., occlusion of Blinky signals
and hardware limitation of Blinkies. We will also collect data
using Blinkies in real environments and conduct experiments
for acoustic scene analysis in future work.
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