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Abstract—Convolutional recurrent neural networks provide
state of the art results in direction of arrival estimation based on
first-order Ambisonics signals, especially in the presence of noise
and/or interfering sound sources. In this work, we investigate
whether increasing the order of Ambisonics up to the fourth
order further improves the estimation results in a challenging
multi-speaker setting with two or three simultaneously active
speakers. Our results show that each additional order of the
Ambisonics representation further improves the localization per-
formance for both speech signals based on simulated and real
measured spatial room impulse responses. The greatest gains in
accuracy can be observed in the particularly demanding scenarios
with three speakers and poor signal-to-interference-ratio.

Index Terms—Multi-source direction of arrival estimation,
higher-order Ambisonics, convolutional recurrent neural net-
work, spherical harmonics.

I. INTRODUCTION

Direction of arrival (DOA) estimation is a well-known task
in audio signal processing and an important component of
many applications such as speech separation [1] or speech
enhancement [2]. Neural networks have been shown to be
superior to classical parametric approaches in DOA estimation,
especially in very demanding reverberant, noisy, and low-SNR
environments [3]–[6]. In addition, Ambisonics-based audio
signal processing is becoming increasingly popular due to
the flexibility and generalizability it enables. Therefore, DOA
estimation based on first-order Ambisonics (FOA) signals has
been the subject of much attention [6]–[9].

Perotin et al. [6], [10], for example, investigated the effect
of different parameters when training convolutional recurrent
neural networks (CRNNs) on FOA data for the DOA esti-
mation of noisy speech. They proposed the usage of features
derived from the sound intensity vector as input for the train-
ing, achieving greater accuracy in DOA estimation than with
using pure magnitude and phase information. Furthermore,
they stated that a classification approach seems to be more
robust to localized interference than a regression interpretation
[10].

While much attention has been focused on FOA signals for
deep learning based DOA estimation, only little research is
conducted on the performance of DOA estimators based on

higher-order Ambisonics (HOA) signals. Pointer experiments
with subjects demonstrated a positive influence of the order of
the Ambisonics signal on the perceived localization accuracy
in a loudspeaker reproduction of a sound field [11]. In addition,
we investigated in a previous study [12] whether increasing
the order of the Ambisonics signal has a positive effect on
the localization results on single-speaker signals, especially
compared to the first-order intensity features proposed in [6].
Our results showed that the CRNN trained on the first-order
intensity features outperformed every model trained on higher-
order magnitude and phase information. Nevertheless, the
potential of the HOA signals has been seen as the estimation
accuracy increased with each additional order for the simulated
spatial room impulse responses (SRIRs) and at least from
order 1 to 2 for the real SRIRs. Investigations on spherical
harmonic (SH) beamforming with unsupervised peak cluster-
ing [13] showed a similar improvement in estimation accuracy
with increasing Ambisonics order, also observing the greatest
improvement when increasing from order 1 to 2.

In real world applications, however, scenarios with several
simultaneously active speakers are particularly relevant. This
work therefore is the first to apply the idea of CRNN-based
DOA estimation to multi-speaker HOA signals of two or three
speakers and to investigate whether or how much the additional
spatial information contained in HOA signals can improve
the estimation accuracy. We especially compare our results to
the well performing single-speaker approach based on features
derived from the sound intensity vector. Since the HOA models
in [12] performed comparatively well in the acoustically most
challenging scenarios of low SNR and because of the physical
motivation and interpretation of the sound intensity features, it
can be suspected that the higher-order models are superior to
the Intensity-CRNN in the multi-speaker scenarios investigated
here.

For training our neural networks, we use the same dataset
of simulated SRIRs as in [12] and adapt it for the multi-
speaker setting. We present the details on the generation of
our training, validation, and testing data in Sec. III after a
brief introduction to the fundamentals of Ambisonics and SH
in Sec. II. The configuration of the trained model and the
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metrics are described in Sec. IV. Finally, the results based on
simulated and measured data are compared and discussed in
Sec. V and summarized in Sec. VI.

II. AMBISONICS

Ambisonics is a 3D audio surround representation and
rendering approach based on the spatial decomposition of the
sound field in the orthonormal basis of SH [6], [14]. This
section gives an overview of the mathematical principles of
Ambisonics. This condensed description of the SH decompo-
sition is based on the more detailed presentation in [15], [16].

In the following, the Cartesian (x, y, z) ∈ R3 and the
spherical (r, θ, φ) = (r,Ω) ∈ [0,∞) × (−π2 ,

π
2 ] × [−π, π]

coordinate systems are used. The x-, y- and z-axes point
to the front, left and top, respectively. The angle φ is the
azimuth, which is zero at the frontal direction and increasing
counterclockwise; θ is the elevation, which is zero at the
horizontal plane and positive above, and r is the radius.

Consider a function f(θ, φ) = f(Ω) ∈ L2
(
S2
)

on
the unit 2-sphere S2 :=

{
x ∈ R3 : ‖x‖2 = 1

}
, then the SH

decomposition of f is given by

f(Ω) =

∞∑
n=0

n∑
m=−n

fnmY
m
n (Ω), (1)

where Y mn is the spherical harmonic of order n and degree m.
The coefficients fnm are calculated by

fnm =

∫
Ω∈S2

f(Ω)Y mn
∗(Ω) dΩ, (2)

where
∫

Ω∈S2 dΩ =
∫ π
−π
∫ π/2
−π/2 sin θ dθ dφ. Equations (1) and

(2) show that any square-integrable function on the unit 2-
sphere can be approximated by a linear combination of the
SH. This approximation even becomes exact for an infinite
number of SH. In this paper, the ambiX format [14] is used
for the (real) SH Y mn :

Y mn (θ, φ) = N |m|n P |m|n (sin(θ))

{
sin(|m|φ), for m < 0

cos(|m|φ), for m ≥ 0

with the Legendre-functions Pmn . To build the set of Ambison-
ics signals according to ambiX, the channels corresponding
to the SH are ordered by the Ambisonics channel number
ACN = n2+n+m and normalised by the SN3D normalisation
N
|m|
n =

√
2−δm

4π
(n−|m|)!
(n+|m|)! .

III. DATA

A. Simulated SRIRs

The training, validation and testing data was generated from
a set of SRIRs simulated with the MCRoomSim toolbox [17]
as Ambisonics signals up to fourth order as described in [12].
Alltogether we generated 8000, 500, and 500 rooms with
random dimensions in [3, 20]×[3, 20]×[3, 5] m for the training,
validation, and testing set, respectively.

The SRIRs were convolved with a randomly chosen sen-
tence from the TIMIT database [18]. For the 3-source case,

another SRIR was selected belonging to the same room but
to a different source and having an angular distance of at
least 15◦ from the first source. This SRIR was then convolved
with a different speech sample from the TIMIT database. The
second HOA speech signal was added to the first HOA signal
at a random signal-to-interference-ratio (SIR) between 0 and
10 dB.

For the 3-source case, this procedure was repeated, main-
taining an angular distance of at least 15◦ from each of the
two sources. The third HOA speech signal was than added to
the other two, again at a random SIR between 0 and 10 dB
relative to the first source.

The signals were cut to the minimum length of the respec-
tive individual speech signals, such that the respective target
number of speakers is active the entire duration of the signal.

Furthermore, we added ambient noise to the speech signals
similar to the procedure in [6]. Therefore, we generated
single-channel babble noise by overlaying 50 sentences of
the respective sets. This babble noise was then convolved
with a diffuse SRIR, which was generated by averaging three
simulated diffuse parts of SRIRs with a receiver placed in
the middle of a random room and a randomly positioned
source. This ambient noise was added to the speech signal at
a signal-to-noise ratio of 20 dB. Finally, these sentences were
cut to one-second-sequences which led to 134 391, 8288 and
8461 sequences for the training, validation and testing set in
the 2-source-case, respectively and 121 397, 7465 and 7715
sequences in the 3-source-case.

B. Real SRIRs

For the analysis of DOA estimation performance in a more
realistic scenario and to assess the generalization quality of our
models trained on simulated data, we measured real SRIRs in
the Immersive Media Lab (IML) [19] at the Institute of Com-
munications Technology. We measured the SRIRs from each
of our 36 KH120 loudspeakers to an em32 Eigenmike® [20]
microphone at nine different positions, each with 2 different
heights and eight different orientations of our microphone. In
total, the described procedure led to 5184 measured SRIRs
in the IML, which were afterwards encoded to a fourth-order
Ambisonics signal using the EigenUnit-em32-encoder1. These
measured SRIRs were used according to the same procedure
as for the simulated SRIRs to generate HOA multi-speaker
signals which resulted in 11 004 and 9943 sequences for the
testing set based on real SRIRs for two and three sources,
respectively.

IV. NETWORKS AND METRICS

Our CRNNs follow the same basic structure as the ones
in [12]. A detailed overview of the network’s architecture is
given in Table I. We formulated the task as a classification
problem, i.e ., as the task of estimating whether or not each
point on a predefined grid corresponds to the direction of an
active source or not, assuming that the number of active sound

1https://mhacoustics.com/eigenunits
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sources is known. Here, we use the following quasi-uniform
grid on the unit 2-sphere [6]:

θi = −90 +
i

I
· 180 ,with i ∈ {0, . . . , I},

φij = −180 +
j

J i + 1
· 360 ,with j ∈ {0, . . . , J i},

(3)

with I = b 180
α c, J

i = b 360
α cos(θi)c, and a grid resolution

parameter α which results in a grid of ngrid =
∑I
i=0

(
J i + 1

)
points. In this paper we set α = 10 which leads to a grid
of ngrid = 425 points. According to this classification setting,
the target of our CRNNs is a multi-hot-encoded vector of size
ngrid, where each index corresponds to a DOA according (3).
For each active speaker in the scene, the entry in the target
vector corresponding to the direction closest to the respective
DOA is set to one.

Since we use a Time-Distributed Dense layer as output
layer, we get a ngrid-dimensional output vector for each time
frame. However, we assume that the sources are static during
each one-second-signal. Therefore, we compute the average
over all time frames for each grid point to get a single output
vector for the whole sequence. From this vector, we choose the
nsources largest values that correspond to the respective DOAs.
In contrast to the results in [6], smoothing the output vector
over neighboring directions did not improve the estimation
accuracy in our case. For comparing the predicted DOA (θ̂, φ̂)

TABLE I. Architecture of the CRNNs for DOA estimation.

Layer Details Output Shape

Input Spectrograms (50, 512, dimin)
Conv2D 3× 3 (50, 512, nfilter)
BatchNorm (50, 512, nfilter)
Activation elu (50, 512, nfilter)
MaxPooling 1× 8 (50, 64, nfilter)
Dropout 0.2 (50, 64, nfilter)
Conv2D 3× 3 (50, 64, nfilter)
BatchNorm (50, 64, nfilter)
Activation elu (50, 64, nfilter)
MaxPooling 1× 8 (50, 8, nfilter)
Dropout 0.2 (50, 8, nfilter)
Conv2D 3× 3 (50, 8, nfilter)
BatchNorm (50, 8, nfilter)
Activation elu (50, 8, nfilter)
MaxPooling 1× 4 (50, 2, nfilter)
Dropout 0.2 (50, 2, nfilter)
Reshape (50, 2·nfilter)
BiLSTM (50, 2·nfilter)
BiLSTM (50, 2·nfilter)
Time-Dist. Dense elu (50, 2·nfilter)
Dropout 0.2 (50, 2·nfilter)
Time-Dist. Dense sigmoid (50, 425)

with the reference (θ, φ) used to synthesize the dataset, we
compute the angular distance δ

[
(θ̂, φ̂), (θ, φ)

]
defined by

δ
[
(θ̂, φ̂), (θ, φ)

]
= arccos

[
sin (θ̂) sin (θ)

+ cos (θ̂) cos (θ) cos (φ̂− φ)
]
.

Since there is no direct mapping of target and estimation
sources due to the classification approach, the estimation needs
to be associated with the corresponding target. We chose the
permutation that minimized the mean angular distance.

For additional evaluation, we further define the so-called
accuracy as the proportion of samples for which the prediction
has an angular distance below a given error tolerance. Due
to the grid resolution of the classification setup, an arbitrary
point on a 2-sphere can have an angular distance of up to
around 7◦ to the nearest point on the grid. Therefore, we will
also evaluate the so-called classification accuracy, which is
the proportion of samples assigned to the correct or closest
discrete grid point.

Our networks are trained on pure magnitude and phase
spectrograms as done before by [5], [12]. The network trained
on Ambisonics signals of order n = 1, . . . , 4 is referred to
as HOA-n-CRNN. We compare the HOA-n-CRNNs to an
approach proposed by Perotin et al. [6]. They used spec-
trograms of features derived from the FOA sound intensity
vector as input (Intensity-CRNN). For more information on
this particular approach, please refer to [6]. The input shape
of all the different networks is (50, 512, dimin), where 50 is
the number of frames, 512 the number of frequency bins, and
dimin the number of input channels with dimin = 2(n + 1)2

for the HOA-n-CRNNs and dimin = 6 for the Intensity-
CRNN. The Short-time Fourier transform for the creation of
the spectrograms was performed on 640 samples, zero-padded
to 1024 samples with a hop-size of 320 samples.

For identifying the optimal number of filters (nfilter), dif-
ferent values ranging from 32 to 1024 were tested for each
network and the value which resulted in the lowest error on
the validation set was chosen. The best values were 128 for
all networks in the 2-source case and the Intensity-, HOA-
1-, and HOA-2-network in the 3-source case as well as 256
for the HOA-3- and HOA-4-CRNN in the 3-source case. For
training the neural network, we used the binary-crossentropy
loss function together with the Nadam optimizer [21] within
the TensorFlow platform [22].

V. RESULTS

As can be seen in Table II, the accuracy of the estimation
improves with each additional Ambisonics order, for both two
and three sources as well as simulated and real data. The rep-
resentation using the FOA intensity features is thereby ranked
between HOA-1 and HOA-2 in all cases and for all metrics.
This underlines the results in [6] and [12] that the features
derived from the intensity vector are a very suitable input
feature for FOA-CRNNs in this task. However, in contrast to
the easier single-speaker scenario in [12], this does not seem to
compensate for the additional higher-order spatial information.
For example, when comparing the Intensity-CRNN with the
HOA-4-CRNN, the mean angular distance decreases by about
21 % for both simulated and real data and two sources.
Similarly, for three sources, there is an improvement in mean
angular distance by 39 % for simulated data and 31 % for real
data. However, this higher relative improvement in localization
accuracy for three speakers occurs, as expected, at an overall
worse localization level than for two sources. As shown in
Fig. 1, the sources in the more demanding scenario with three
speakers are on average localized worse by each model than
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TABLE II. Accuracies (%) given error tolerances as well as mean/median angular distances (◦) and classification accuracies
(%) for the different networks with two/three sources and simulated/real SRIRs. The best result for each case is shown in bold.

(a) Two sources with simulated SRIRs.
Accuracy Ang. distance Classif.

Network < 3° < 5◦ < 10◦ < 15◦ mean median

Intensity 19.87 46.77 81.18 87.21 13.55 5.28 57.08
HOA-1 16.92 40.57 75.40 83.45 16.25 5.91 50.51
HOA-2 20.19 48.60 83.18 88.80 12.65 5.11 58.95
HOA-3 22.97 55.24 87.01 91.02 11.30 4.67 66.25
HOA-4 23.92 57.56 88.32 91.46 10.67 4.55 68.79

(b) Two sources with real SRIRs.
Accuracy Ang. distance Classif.

Network < 3◦ < 5◦ < 10◦ < 15◦ mean median

Intensity 11.62 30.57 72.60 85.65 14.98 6.92 39.11
HOA-1 10.11 27.05 66.79 82.53 17.07 7.53 35.09
HOA-2 11.42 29.75 72.62 87.60 13.36 6.99 37.90
HOA-3 12.54 32.54 76.83 90.01 12.28 6.67 40.81
HOA-4 13.00 33.15 78.34 90.70 11.78 6.52 41.71

(c) Three sources with simulated SRIRs.
Accuracy Ang. distance Classif.

Network < 3° < 5◦ < 10◦ < 15◦ mean median

Intensity 15.02 35.51 65.56 73.96 23.63 6.76 46.89
HOA-1 13.44 31.58 60.63 70.94 25.57 7.59 42.47
HOA-2 16.72 39.69 69.86 77.56 20.86 6.07 51.29
HOA-3 20.24 48.89 77.98 82.85 16.73 5.07 61.61
HOA-4 22.48 54.24 82.70 86.23 14.46 4.73 66.98

(d) Three sources with real SRIRs.
Accuracy Ang. distance Classif.

Network < 3◦ < 5◦ < 10◦ < 15◦ mean median

Intensity 8.52 21.42 55.12 70.50 25.63 8.99 29.91
HOA-1 7.49 19.14 50.47 67.48 26.93 9.90 27.04
HOA-2 9.32 23.48 59.01 73.90 23.41 8.40 32.49
HOA-3 11.43 27.68 66.67 79.79 19.52 7.46 37.09
HOA-4 12.08 30.39 70.31 82.68 17.68 7.05 39.87

(a) Simulated SRIRs.
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(b) Real SRIRs.
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Fig. 1. Box plot of angular distances (◦) for the five different networks using simulated (a) and real (b) SRIRs. The boxes are
drawn from the first to the third quartile. The horizontal line shows the median. The whiskers go from the lowest data still
within 1.5 IQR of the lower quartile to the highest data within 1.5 IQR of the upper quartile.

those in the 2-source case for both simulated and real SRIRs.
This can be partly explained by the fact that the SIR level for
three speakers is lower overall due to the way it is synthesized.
In the 2-speaker scenario, the SIR ranges from −10 to 10 dB,
while in the 3-speaker scenario it ranges from −13 to 7 dB.

The results in Fig. 2 allow a finer analysis of the localization
results as a function of the SIR. It can be seen clearly that the
median accuracy of the estimate considerably decreases and
that the variance increases with decreasing SIR in all scenarios
(simulated/real SRIR and two/three sources). In addition, there
is significant improvement using higher orders for all SIR
conditions, with particularly large improvements for poor SIR.
For example, the median angular distance decreases from
about 11.1◦ for the Intensity-CRNN to 8.0◦ for the HOA-4-
CRNN (an improvement of about 28 %) for a low SIR between
−13 and −9 dB using real data with three speakers. At the
same time, the interquartile range (IQR) decreases by about
70 % from 37.6◦ (Intensity-CRNN) to 11.3◦ (HOA-4) in the
same SIR range. In the high SIR scenarios (SIR between 3
and 7 dB), the Intensity-CRNN already achieves rather a small
median angular distance and IQR. Nevertheless, the usage of
HOA further improves estimation accuracy from 7.4◦ to 6.4◦

(improvement of about 14 %) and the IQR from 7.4◦ to 5.3◦

(28 %) for the real data and three sources.

Overall, our evaluations show a very reliable generalization
of our network trained on simulated data to speech signals
synthesized with real SRIRs (some of the results in the low-
SIR-scenarios are even more accurate for the real SRIRs). Of
course, this conclusion is based on only a small sample and
needs to be strengthened with additional real rooms and/or
speech recordings.

VI. CONCLUSION AND OUTLOOK

In this paper we investigated the influence of the order of
HOA signals on the accuracy of multi-speaker DOA estimation
of noisy speech with CRNNs. It has been shown that the
average angular distance of the localization can be significantly
improved by using HOA signals compared to FOA ones,
for both simulated and real SRIRs. Furthermore, the largest
improvements were achieved in the most demanding scenarios
with three speakers and poor SIR. The Intensity-CRNN, which
was very impressive in the single-speaker case, is always
ranked between the HOA-1-CRNN and the HOA-2-CRNN.

In the future we want to further evaluate our model in
more detail on additional data generated from real SRIRs
and also on real recordings. Furthermore, we want to use our
dataset to estimate other parameters such as room volume,
reverberation time and frequency-dependent absorption and
scattering coefficients using HOA signals.
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(a) Two sources with simulated SRIRs.
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(b) Two sources with real SRIRs.
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(c) Three sources with simulated SRIRs.
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(d) Three sources with real SRIRs.
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Fig. 2. Box plot with angular distances of the different networks for different SIR regions, two/three sources and simulated/real
SRIRs. Note the different scaling of the axes for two and three sources.
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