
Deep Ranking-Based DOA Tracking Algorithm
Renana Opochinsky∗, Gal Chechik† and Sharon Gannot∗

∗ The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
Email: {renana.klainman,sharon.gannot}@biu.ac.il

† Gonda brain research center, Bar-Ilan University, Ramat-Gan, Israel and NVIDIA Research
Email: gal.chechik@biu.ac.il

Abstract—In this study, we present a weak-supervised deep
neural network-based tracking algorithm for a moving source. A
triplet-loss network is trained with instantaneous spatial features
to estimate the time-varying DOA. The core idea is to minimize
the use of labeled samples (i.e. samples which are accurately
localized, and difficult to acquire) by using instead partial
knowledge drawn from an unlabeled, and much larger, dataset
in which only the relative spatial ordering between the samples
is known. We use a deep learning architecture that stochastically
combines a triplet-ranking loss for the unlabeled samples and a
spatial loss for the labelled samples and learns a nonlinear deep
embedding that maps acoustic features to an azimuth angle of the
source. We show that it is unnecessary to train the network with a
large number of random trajectories of a moving source, and that
triplets of static sources from the same locus, which can be more
easily acquired, are sufficient. A simulation study demonstrates
the applicability of the proposed method to dynamic problems.

Index Terms—acoustic source tracking, deep embedding learn-
ing, triplet-loss, relative transfer function

I. INTRODUCTION

Speaker localization (specifically, direction of arrival (DOA)
estimation) in acoustic environments using a microphone array
is a basic building block in various audio applications, in-
cluding smart home devices, automatic camera steering, beam-
forming, source separation, and robot audition. The problem
further complicates when the sound source is free to move.
In this case, the source should be dynamically localized,
necessitating online tracking algorithms.

The problem of DOA estimation of sound sources has
attracted the attention of the research community for more
than four decades. Among the most common methods are
those based on the analysis of the cross-correlation between
microphones, namely the generalized cross-correlation phase
transform (GCC-PHAT) [1] and its multichannel extension,
the steered response power phase-transform (SRP-PHAT) [2].
Although mainly addressing non-reverberant environments,
methods based on the analysis of the spatial correlation
matrix of the received signals, namely the multiple signal
classification (MUSIC) algorithm [3] and its extensions, are
also widely used in audio processing applications [4]. These
techniques were developed for static scenarios, and are not
directly addressing the dynamic case.

Several recursive DOA tracking methods, based on recursive
least squares, are presented in [5]. Probabilistic approaches,
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directly addressing the time-varying tracking problem, includ-
ing Bayesian inference methods, e.g. particle filters [6]–[9];
probability hypothesis density (PHD) filtering, mainly used
in multi-modal processing [10], [11]; factor graphs [12]; and
non-Bayesian methods based on the recursive expectation
maximization (EM) procedure [13]–[15].

Training-based localization methods have recently gathered
momentum. Under this paradigm, acoustic features are first
extracted from the measured signals and then mapped to
the corresponding source positions by applying a learned
nonlinear function. Training-based source localization algo-
rithms can be either fully-supervised, i.e. all data points in
the training corpus are attached with accurate location labels,
or semi/weakly-supervised, i.e. only a small percentage of
the training set is labelled and the rest is unlabelled or
attributed with weak labels. Examples for fully-supervised
acoustic localization algorithms using convolution neural net-
works (CNNs) can be found in [16], [17]. In these works,
the tracking of moving sources is facilitated by the utilization
of instantaneous features. Tracking is explicitly addressed in
[18], [19] by the application of convolutional recurrent neural
networks (CRNNs). Among the semi-supervised methods, we
can list the manifold-learning based methods [20], [21] or
methods based on variational autoencoder (VAE) [22].

Recently, we have presented a weakly-supervised deep-
learning localization method that only utilizes a few labeled
samples attributed with accurate position labels (referred to as
anchors), together with a larger set of unlabeled samples, for
which only their relative spatial ordering is known [23]. This
method has shown to yield high localization accuracy in static
scenarios for various reverberation levels.

In this paper, we present an extension of our previously
proposed method, which is applicable to moving speakers. The
algorithm’s performance is examined using simulated trajec-
tories of a moving source in a reverberant room. The main
contribution of this paper is the demonstration of the ability of
the proposed architecture to extract relevant information from
the weak spatial ordering of static sources enabling source
tracking in dynamic scenarios.

II. PROBLEM FORMULATION

We consider a single moving speaker recorded by a pair
of microphones. In this section, we will first discuss the
measurement model and then describe the feature vector.
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A. Measurements

The position of the speaker varies over time and will be
described by p(t) = [r(t), θ(t), φ(t)]>. In this paper, we
consider the DOA estimation problem and consequently the
azimuth angle φ(t) will solely describe the source position.
Let the uttered speech signal be s(n) and its respective short-
time Fourier transform (STFT) representation s(l, k), where l
is the frame index and k is the frequency index. The speech
signal is captured by two microphones located in the room,
and the respective measured signals in the STFT domain are
approximately given by:

xiφ(l, k) = hiφ(l, k)s(l, k) + ui(l, k), (1)

where i = 1, 2 is the microphone index, hiφ(l, k) is the
acoustic transfer function (ATF) relating the speaker located
at azimuth angle φ and the i-th microphone and ui(l, k) is
an additive, assumed for simplicity to be spatially-white and
stationary, noise signal.

B. Time-frequency features

In this work, we have chosen to use an instantaneous version
of the relative transfer function (RTF) [24] as the feature
vector. The RTF is known to encapsulate the spatial fingerprint
of a sound source [25]. As the instantaneous relative transfer
function (iRTF) version uses the current frame and a few
context frames, it may facilitate source tracking in dynamic
scenarios. Define the iRTF as:

iRTF(l, k) =

∑l+nc
i=l−nc

x2φ(i, k)x
∗
1φ(i, k)∑l+nc

i=l−nc
x1φ(i, k)x∗1φ(i, k)

(2)

with 2nc the number of context frames. A small value of
nc promotes fast tracking at the expense of high estimation
variance, and vice versa.

The frame-dependant feature vector ĥ(l) is constructed in
the following way. First, we concatenate the iRTF components
over frequencies in the interesting band, namely, only frequen-
cies in the range k1, . . . , kD where most of the speech signal
power is concentrated. Next, we split the complex-valued iRTF
to the real and imaginary parts. The feature vector is thus given
by:

ĥ(l) = [<(iRTF(l, k1), . . . , iRTF(l, kD)),
=(iRTF(l, k1), . . . , iRTF(l, kD))]. (3)

III. DOA TRACKING ALGORITHM

In this work, we follow the network architecture proposed
in [23]. In the training phase, the loss function involves two
terms. A spatial loss, reflecting our knowledge on the azimuth
angle of some labelled samples, and a ranking loss, reflecting
our knowledge on the relative proximity of the unlabelled sam-
ples. Recently, ranking-loss and triplet-loss training schemes
were applied in audio processing problems [26]–[29]. In the
proposed scheme, the network is trained with static sources
and long speech utterances, and in the test phase it is applied to
moving sources. The other acoustic conditions remain intact.

Fig. 1. An illustration of the experimental setup. The source position, both in
the training and test stages, is confined to the arc, with φ ∈ [0◦, 180◦]. The
black dots mark the positions of the unlabeled data and blue triplet of dots
are example of train triplet. The red dots mark the labeled examples, green
trajectory represents the test speaker trajectory.

Due to the source movement, the iRTF becomes time-varying
and can only be estimated from short speech segments. In this
section we summarize the training procedure and discuss in
details the data arrangement, stressing the mismatch between
the train and test phases.

A. Overview

We address the problem of inferring the time-varying source
azimuth angle φ(l) from the instantaneous feature vector h(l),
defined in (3), by learning a nonlinear function φ = f(h) that
maps an iRTF sample onto an embedding space that corre-
sponds to φ. The mapping will be learned using a combination
of weakly-labeled and labeled samples. We use two sources
of information during training: first, strong supervision - in
the form of a small number of samples with known azimuth
angles; second, weak supervision - in the form of a large set
of samples for which only their relative proximity is known.

Figure 1 illustrates the proposed scheme. Consider a set of n
sound recordings sampled along an arc in the training stage.1

We assume that a small number, na, of these samples termed
anchors are labelled, namely their corresponding azimuth
angle is accurately known. These samples are represented
in the figure as red dots on the arc. The angles of the
remaining n − na samples, represented by black dots on the
arc, are unknown. Instead, their relative proximity, which can
be more easily obtained, is available. We refer to these samples
as weakly-labelled. From these points, we form triplets of
samples, represented as blue points in the figure. Each triplet
comprises one query sample, one positive sample and one

1The problem complicates if 2D or 3D source location should be inferred,
necessitating a larger number of microphones and spatially distributed training
points.
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negative sample. The only available information is that the
positive sample is closer to the query sample than the negative
sample. In the test phase, one speaker is moving along the arc
in an arbitrarily unknown trajectory (depicted as a green curve
in the figure) while uttering speech. The goal of the algorithm
is to track the time-varying angle of the speaker.

A deep architecture is used to infer the nonlinear function
f(h). It is implemented as a combined system comprising
three identical building blocks with shared weights, each of
which is a simple fully-connected network as described in [23].
The input to the combined system is either a triplet or an
anchor, according to the training routine that will be explained
in the sequel. Note that in the test phase, only a single replica
of the network is used to estimate the angle of the source.

B. Training with a combined loss

The overall loss stochastically combines spatial loss com-
ponent with ranking loss component. This term encourages the
smoothness and continuity of the mapping f(h), encouraging
RTFs from close positions to be located closer in the embedded
space. However, the learned mapping is entirely free to learn
any monotonic function of the true predictions. Therefore, to
anchor the predicted location to the true spatial space, we
further enforce a correspondence of some RTF with specific
spatial positions, as follows:

loss =

{
lranking(h,h

+,h−) with probability α
lspatial(h

anchor, φanchor) with probability 1− α
,

(4)
where α ∈ [0, 1] controls the relative weight of the two loss
terms. The ranking loss lranking(h,h

+,h−), which was chosen
to be implemented in the format of triplet loss, is defined as

lranking(h,h
+,h−) =

max
(
0, 1 + |f(h)− f(h+)| − |f(h)− f(h−)|

)
(5)

and the spatial loss lspatial(h
anchor, φanchor) is defined as

lspatial(h
anchor, φanchor) = |f(hanchor)− φanchor|. (6)

The training routine includes alternating activation of both
loss components. With probability α we sample a triplet of
unlabelled samples and compute the ranking loss. Similarly,
with probability 1 − α we sample an anchor, i.e. a sample
with known location, and compute the spatial loss w.r.t. its
true location φanchor.

C. Data arrangement

Organization of the data in triplets is required for imple-
menting the triplet loss. The input to the network is a triplet,
each of which comprises three iRTF samples (h,h+,h−);
namely a query sample h, a positive sample h+, and a negative
sample h−. After randomly drawing h, two other samples are
drawn from the unlabeled set and assigned to h+ and h−,
based on their proximity to h. Note that the exact positions of
h+ and h− are not required. The triplets are monotonically
sampled in the range [0◦ − 180◦] on the predefined source
locus, an arc in our case. During the training phase, the speech

sources are static and the iRTFs are estimated using long
utterances to guarantee accurate estimation.

The test set comprises observations from unknown angles
of a moving speaker on the same arc. We assume a perfect
match between the training phase and the test phase in terms
of the acoustic conditions, namely the reverberation time and
the signal to noise ratio (SNR) level, and of the microphone
array constellation within the room. Yet, due to the speaker’s
movement in the test phase, the acoustic paths from the
source to the microphone rapidly change over time, resulting
in respective time-variations in the iRTF. This implies a
significant mismatch between the training and test conditions.
Despite this mismatch in the generation of the signals, the
proposed algorithm applies the mapping function that was
inferred in the training phase φ̂test = f(htest), to dynamically
obtain the source angle.

IV. SIMULATION STUDY

In this section, we evaluate the performance of the pro-
posed algorithm and compare it with a nearest neighbor (NN)
approach.

A. Training set

To generate the training data we simulated a two-
microphone array with 8 cm inter-distance. The array was
randomly positioned at 20 different positions in a 6× 6.2× 3
simulated room. Three reverberation times, 200 ms, 400 ms
and 600 ms were simulated. We used the room impulse
response (RIR) generator,2 efficiently implementing the image
method [30]. The source is known to be statically positioned
on an arc with 2 m radius with respect to the microphone pair
center, with an azimuth angle φ in the range [0◦ − 180◦].

For each source position, clean anechoic speech signals
were drawn from the TIMIT dataset [31]. The speech signals
were convolved with acoustic impulse responses (AIRs) relat-
ing the source position and the microphones’ positions. These
reverberant signals are further contaminated by spatially-white
noise signals with SNR levels of either 15, 20 or 30 dB. The
microphones and the source are arranged in the same plane
with identical heights.

The sampling rate was set to 16KHz and the frame-length
of the STFT to K = 1024, with an overlap of 75% between
two successive frames. The feature vector comprises D = 74
frequency bins corresponding to the frequency range [0.2 −
2.5] kHz, where most of the speech power is concentrated.
The dimensions of the feature vector are therefore 148×1 per
time-frame.

The training set is a collection of speech samples as
described above, uttered by static speakers located at different
positions on the arc. For each acoustic condition, n = 1440
samples, uniformly distributed in the range [0◦ − 180◦], were
used to train the network parameters. These include na an-
chors. The effect of the number of anchors on the performance
of the proposed and the competing algorithms will be analyzed

2Available online at github.com/ehabets/RIR-Generator
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in Sec. IV-D. The exact positions of the other 1440−na speech
utterances are not known during training but rather the relative
order of triplets of samples, as explained in Sec. III-B. The
weight parameter α was set to 0.95.

B. Test set

As explained in Sec. III-C, the acoustic conditions and the
microphone constellation in each test case match a corre-
sponding condition in the training set. The main and crucial
difference between the training and test phases lies in the
source dynamics. While the sources in the training phase
are static, they are free to move in the test phase, with an
arbitrarily unknown trajectory on the same arc. Hence, the
azimuth angle φ becomes a time-varying unknown value in
the range [0◦ − 180◦].

To simulate moving sources, we used the signal generator
package.3 The performance of the proposed algorithm is
exemplified in this paper with a sinusoidal trajectory with
amplitude of 60◦ with velocities in the range [0.14−1.1] m/s.
Other trajectories were also tested but are not presented here
due to space constraints. Overall, nval = 420 samples were
used as a validation set for tuning the hyper-parameters of the
algorithm. Other ntest = 420 samples were used as a test set
for evaluating the model accuracy. Both validation and test
phases are using moving sources.

A note on the the number of context frame is in place. While
better estimation accuracy may be expected if nc increases, its
value is upper-bounded by the “smearing” effect of the source
dynamics, which becomes more pronounced in high velocities.
The performance of the algorithm as a function of nc will be
examined in Sec. IV-D.

C. Performance measure and competing method

The metric used to assess the localization accuracy is the
root mean square error (RMSE) over the test set between
the true test angles and the inferred angles using the trained
mapping function, as defined below:

RMSE =

√√√√ 1

ntest

ntest∑
i=1

(φi − f(hi))2. (7)

The proposed algorithm was compared with a nearest neigh-
bor (NN) approach. In the latter, the source is localized by
evaluating the distance between the measured iRTF and the set
of all anchor iRTFs, obtained in the training phase as labeled
data. The position estimate is obtained by selecting the closest
anchor point using the Euclidean distance between the iRTFs.
We report in Sec. IV-D the mean RMSE averaged over the
best 15 trials out of 20 constellations and the corresponding
standard deviation.

D. Results

The RMSE results of the proposed and competing algo-
rithms are evaluated, as a function of various parameters.
Table I depicts the RMSE results as a function of na. It

3Available online at github.com/ehabets/Signal-Generator

TABLE I
MEAN RMSE (AND STANDARD DEVIATION) FOR THREE VALUES OF na

AND T60 = 200, 400, 600 MS. SNR=30 DB, nc = 20 FRAMES,
VELOCITY=0.55 M/S.

na 2 anchors 3 anchors 5 anchors

T60 200 400 600 200 400 600 200 400 600

NN 47.6(0.3) 47.4(0.3) 47.7(0.1) 30.1(2.2) 28.9(1.1) 29.3(1.3) 21.3(2.8) 21.1(3.1) 24.1(2.7)
Proposed 16.3(3.5) 14.4(5.0) 19.4(4.0) 14.8(6.1) 10.5(3.4) 10.7(0.8) 13.3(5.2) 8.9(2.7) 10.5(1.1)

TABLE II
MEAN RMSE (AND STANDARD DEVIATION) FOR THREE SNR VALUES

AND T60 = 200, 400, 600 MS. na = 5, nc = 20 FRAMES,
VELOCITY=0.55 M/S.

SNR 15 dB 20 dB 30 dB

T60 200 400 600 200 400 600 200 400 600

NN 16.6(2.6) 23.5(1.8) 24.4(2.2) 21.8(3.0) 17.7(2.0) 20.3(1.2) 21.3(2.8) 21.1(3.1) 24.1(2.7)
Proposed 19.0(1.4) 10.7(2.3) 10.5(1.1) 14.3(3.9) 10.7(3.6) 10.0(0.9) 13.3(5.2) 8.9(2.7) 10.5(1.1)

TABLE III
MEAN RMSE (AND STANDARD DEVIATION) FOR DIFFERENT VALUES OF
nc AND T60 = 400 MS. na=5 AND SNR= 30 DB AVERAGED ON ALL

VELOCITIES.

nc 2 5 10 20

NN 27.0(1.9) 21.1(3.4) 22.1(1.5) 21.2(3.2)
Proposed 17.7(1.0) 13.4(0.6) 9.9(0.5) 8.3(0.6)

is evident that increasing the number of anchors improves
performance for both methods. The proposed approach sig-
nificantly outperforms the NN approach. As can be deduced
from Table II, higher SNR levels also improves performance.
Investigating the RMSE performance as a function of T60
reveals an interesting behaviour. In most cases, the results
for T60 = 400 ms outperforms the results obtained for both
the low and high reverberation levels. This can be explained
by the iRTF characteristics. As shown in several studies, see
[25] and references thereof, this feature acts as an acoustic
fingerprint of the source position. Hence, when reverberation
level increases the structure of the feature becomes more
intricate and consequently the differences between adjacent
positions more pronounced. In the high reverberation case,
T60 = 600 ms, a slight performance degradation occurs due
to various factors, such as STFT frame-size, etc.

We also evaluate performance as a function of the context
length, from nc = 2 frames (corresponding to 128 ms), to
nc = 20 frames (corresponding to 1.28 s).

As evident from Table III, the context length is a significant
factor in the tracking accuracy, with longer context length
implying better results. As this is true for all tested velocities
in the range 0.14 − 1.1 m/s, only averaged results are pre-
sented. At higher velocities (not presented here), performance
degradation is encountered due to the smearing effect of the
dynamic scenario. Finally, we exemplify in Fig. 2 the esti-
mated trajectories for T60 = 400, 600 ms. Excellent tracking
capabilities are demonstrated for T60 = 400 ms. In the more
challenging T60 = 600 ms case, a performance degradation is
observed, especially when the source acceleration is high.

V. CONCLUSIONS AND DISCUSSION

In this paper, we introduced a weakly-supervised approach
for tracking a moving speaker using deep neural networks.
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(a) T60 = 400 ms (b) T60 = 600 ms
Fig. 2. Estimated (red dots) and ground-truth (solid blue lines) azimuth angle
vs. time using na = 5 anchors. Data parameters were SNR=30 dB, nc =
20 frames, velocity=0.55 m/s.

The algorithm reduces the dependence on labeled, expensive
to acquire, data by utilizing the information on the relative
proximity of samples. The method learns a mapping be-
tween an iRTF feature and the source position. Simulation
results demonstrate that the proposed ranking-based method
can accurately track a moving source in a wide range of
reverberation conditions and SNR levels, and its superiority
over an NN-based approach. Our network is geared towards
learning known acoustic environments, e.g. a robot that learns
to act in a specific room. Accordingly, we assume a perfect
match between the acoustic conditions and the microphones-
room constellation in the training and test phases. However,
the train and test phases significantly differ in the dynamic
characteristics of the problem. While the sources are static in
the training phase, they are free to move in the test phase.
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