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Abstract—In this study, we propose a low-computational deep
neural network (DNN)-based speech enhancement scheme for
hearing aids. Since the computational resources in the digital
signal processor embedded in a hearing aid are very limited, we
reduce the input feature dimension for the DNN. To achieve low
computational processing, we consider a dimensionality reduction
by element selection. The elements are selected by minimizing the
reconstruction error of a linear autoencoder. Because it is a se-
lection, the proposed dimensionality reduction does not need any
multiplications, unlike other dimensionality reduction algorithms
such as principal component analysis. Therefore, our algorithm
can reduce computational cost with little degradation of the
speech enhancement performance. We evaluate the performance
and the computational cost of the proposed algorithm compared
with conventional algorithms.

Index Terms—speech enhancement, noise reduction, hearing
aids, dimensionality reduction, low computational cost.

I. INTRODUCTION

Hearing-impaired people have great difficulty understanding
speech in noisy environments such as parties or crowded
restaurants. To solve this problem, several types of single-
channel speech enhancement algorithm based on spectral
subtraction techniques have been proposed and implemented
in hearing aid systems [1]. Although most of these algorithms
improve listening comfort of hearing-impaired people in noisy
situations but rarely improve speech intelligibility [2]–[4]. A
deep neural network (DNN)-based speech enhancement algo-
rithm with time-frequency masking in the short-time Fourier
transform (STFT) domain has been proposed and shown to
exhibit a significant performance gain for speech intelligibility
in noisy environments for hearing-impaired people [5]–[8].
However, sound processing in hearing aids is required to
work with low computational cost. In such systems, a large
number of multiplications can greatly increase the compu-
tational burden. Several algorithms have been proposed to
reduce the computational cost of DNNs. For example, teacher-
student learning can be used to design a small and compact
network with high accuracy based on larger models [9]–
[11]. Pruning [12] removes inessential parameters without
incurring accuracy loss. Quantization [13]–[15] reduces the

computational precision of weight coefficients and activation
functions.

We focus on reducing the dimensionality of input features
to reduce computational cost. Dimensionality reduction is
an essential preprocessing step improving the computational
efficiency and accuracy of machine learning [16]. There are
various dimensionality reduction methods such as principal
component analysis (PCA), linear discriminant analysis, and
multidimensional scaling. However, a linear transformation
such as PCA requires matrix multiplication, which increases
the number of multiplications and thus imposes a large com-
putational burden on the hearing aid.

In order to realize dimensionality reduction with low com-
putational cost, we propose a new approach of reducing di-
mensionality by the element selection proposed in [17], rather
than a linear transformation. For an appropriate selection, the
elements are selected to minimize the reconstruction error of
the linear autoencoder of the original data. After dimension-
ality reduction, the selected elements are fed to a DNN as
input features. If the selected elements retain the features of
the original data, the DNN is expected to be trained to achieve
the same accuracy as one trained with original data, even if
the number of multiplications at the input layer is reduced.
Furthermore, the proposed algorithm has the possibility of
being used as a preprocessing step in other algorithms to
improve their performance to computational cost ratio.

We apply this scheme to DNN-based speech enhance-
ment. We compare the performance of the proposed low-
computational DNN-based speech enhancement and that of
a conventional approach.

II. DNN-BASED SPEECH ENHANCEMENT USING
TIME-FREQUENCY MASKING

A. DNN-based time-frequency masking

We apply DNN-based time-frequency masking to speech
enhancement. Let X(ω, τ) be an STFT of a mixture of the
target clean speech and a noise signal. In time-frequency
masking techniques, the target clean signal is estimated by
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applying the time-frequency mask M(ω, τ) to X(ω, τ) in the
STFT domain.

Ŝ(ω, τ) = M(ω, τ)X(ω, τ) (1)

Then, the estimated clean speech in the time domain can be
obtained by the inverse discrete Fourier transform and overlap-
add. There are various masking targets, such as ideal binary
mask [18], [19], ideal ratio mask (IRM) [20], and spectral
magnitude mask [8]. In this work, we choose the IRM since it
has been reported that it improves the speech intelligibility of
hearing-impaired people in noisy environments [5], [6]. The
IRM is given by

M(ω, τ) =
|S(ω, τ)|2

|X(ω, τ)|2
, (2)

where S(ω, τ) is an STFT of the target clean signal. Since
we do not know S(ω, τ), we use a DNN to estimate M(ω, τ)
from the noisy speech X(ω, τ).

B. Low-computational DNN-based speech enhancement
The number of multiplications often affects the power

consumption when considering applications to small devices
such as hearing aids. Therefore, in the rest of this paper, we
define the computational cost by the number of multiplications.
DNN-based time-frequency masking often requires many mul-
tiplications, especially in input layers.

Several methods can be used to reduce the computational
cost of DNN inference. Pruning [12] removes connections or
units that are unnecessary or redundant. Quantization reduces
the precision of the parameters or activations to lower bit
representations [13]–[15]. Teacher-student learning transfers
a trained model to a smaller model [9]–[11]. As one of
these techniques, we focus on dimensionality reduction which
is widely used to reduce computational cost and increase
accuracy. If we can reduce the dimensionality of the input
vector to the DNN without losing useful information from
the original data, we can develop an algorithm that reduces
the computaional cost on its own or when combined with
conventional algorithms.

III. DIMENSIONALITY REDUCTION BASED ON ELEMENT
SELECTION

A. Linear dimensionality reduction
Dimensionality reduction is a preprocessing step for re-

moving redundant features to improve the accuracy and re-
duce the computational cost [16]. We consider obtaining M -
dimensional real-valued vector y from K-dimensional real-
valued vector x (M < K). One of the most widely used
methods for dimensionality reduction is PCA [16]. In PCA,
we obtain y by multiplying matrix P ∈ RM×K with x as

y = Px. (3)

P is a projection matrix that transforms vectors from the orig-
inal space to a new space whose basis is the M components
of the original vectors. However, this implementation requires
M ×K multiplications in (3), which is a significant problem
for hearing aids with limited computational resources.

Fig. 1. Dimensionality reduction by element selection.

B. Dimensionality reduction based on element selection [17]

To avoid additional multiplications due to dimensionality
reduction, we apply element selection proposed in [17], where
we obtain an M -dimensional vector by selecting M elements
from a K-dimensional vector. Element selection requires no
multiplication and it is equivalent to (3) when the (i, j)-th
element of P satisfies

pij =

{
1 (j = σ(i))

0 (otherwise),
(4)

where {σ(i)|i = 1, 2, · · · ,M} indicates M selected indices
from K indices {1, 2, · · · ,K} without duplication. σ(i) is
selected by minimizing the reconstruction error of a linear
autoencoder of x. In other words, when x is reconstructed
with the reconstruction matrix Q to y, we set P that minimizes
the mean squared error of reconstructed vector x̂ = Qy and
original vector x, where Q ∈ RK×M is optimized. P is
derived as

P = argmin
P

ε(P ), (5)

where

ε(P ) = min
Q

E(|Qy − x|2) = min
Q

E(|QPx− x|2). (6)

Fig. 1 presents an image of dimensionality reduction by
element selection and reconstruction.

We optimize σ(i)(i = 1, 2, · · · ,M) by iteratively swapping
a selected index and a non selected index. Let ∆hj be
ε(PRhj)− ε(P ), where h is a selected index (one of σ(i)), j
is a non selected index, and Rhj is an identity matrix except
for the four entries: rhh = rjj = 0 and rhj = rjh = 1 where
rhj is the (h, j)-th element of Rhj , and others as well. Rhj
works for swapping the index h and j. Then, the optimization
algorithm can be written as follows.

1. Initialize σ(i)(i = 1, 2, · · · ,M) by selecting indices
randomly.

2. For each of i = 1, 2, · · · ,M , evaluate ∆σ(i)j for all non
selected j and find its minimum in terms of j. If the
minimum is less than 0, swap σ(i) and j∗ achieving the
minimum, and update P . If not, just move to the next i.

3. If ∆σ(i)j is equal to or larger than 0 for all i =
1, 2, · · · ,M , the algorithm is converged.

This algorithm is greedy and the reconstruction error in (6)
does not increase while the above algorithm is running. The
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Fig. 2. Block diagram of the proposed algorithm.

fast computation for this algorithm was preliminarily presented
in [17] and will be presented in another paper.

IV. LOW-COMPUTATIONAL DNN-BASED SPEECH
ENHANCEMENT BASED ON ELEMENT SELECTION

Our proposed algorithm reduces the computational cost of
DNN-based speech enhancement using dimensionality reduc-
tion based on element selection, with the ultimate goal of
application to hearing aids. Fig. 2 presents a block diagram of
the proposed algorithm. Note that the element selection does
not need any multiplications because it is a processing of just
selecting pre-determined indexed elements of x.

We conducted experiments to confirm the effectiveness of
the dimensionality reduction method by element selection. The
performance of the proposed algorithm is compared with that
of a conventional algorithm. To estimate the IRM, a fully-
connected DNN, which is the most basic and simplest speech
enhancement architecture [21], is used. We prepare several
conditions that require various numbers of multiplications for
both the conventional and proposed algorithms by changing
the number of units in hidden layers.

V. EXPERIMENTS

A. Dataset

We used clean speech from the Japanese Newspaper Article
Sentences corpus [22] and noise from the TUT dataset [23],
[24]. To generate training data, 12 hours of speech (50 male
and female speakers each) of the corpus were combined with
noise recorded in 15 types of environment at signal-to-noise
ratios (SNRs) of 0, 5, and 10 dB. Evaluation data were
obtained from 20 min of speech (five male and five female
speakers different from the speakers used for the training
data) and combined with 2 kinds of noise (‘Traffic’ and
‘Cafe/restaurant’ noise from different recordings used for the
training) at SNRs of 0, 5, and 10 dB.

B. Setup

The sampling frequency is 16 kHz, the frame length is
1024 samples, and the frame shift length is 512 samples. A
Hamming window is used for frame analysis. The input of
the DNN is the amplitude spectrum for the current frame of
noisy speech, and the target of the DNN is the IRM at the
same frame. Therefore, the DNN has 513 input and 513 output
dimensions when without dimensionality reduction. When the
dimensionality reduction is adopted, the DNN has fewer input
dimensions than 513. DNN has 3 hidden layers under each

TABLE I
CONDITIONS WITHOUT DIMENSIONALITY REDUCTION

Condition Network structure Multiplications
All512 513-512-512-512-513 1049600
All256 513-256-256-256-513 393728
All102 513-102-102-102-513 125460
All51 513-51-51-51-513 57528
All25 513-25-25-25-513 26900

TABLE II
CONDITIONS FOR DIMENSIONALITY REDUCTION BY ELEMENT SELECTION

Condition Network structure Multiplications
Sel MMRE512/Rand512 256-512-512-512-513 918016
Sel MMRE256/Rand256 256-256-256-256-513 327936
Sel MMRE102/Rand102 256-102-102-102-513 99246
Sel MMRE51/Rand51 256-51-51-51-513 44421
Sel MMRE25/Rand25 256-25-25-25-513 20475

condition. Table I and Table II show the conditions used in the
experiment. The conventional method without dimensionality
reduction is denoted as Alln, where n indicates the number of
units in the hidden layers. Similarly, the proposed method with
dimensionality reduction by element selection to minimize the
mean reconstruction error is denoted as Sel MMREn. Also,
the method with dimensionality reduction by random element
selection is denoted as Sel Randn. The condition Alln has 513
input dimensions because there is no dimensionality reduction.
Sel MMREn and Sel Randn reduce the input dimensions by
half by element selection.

For training, the learning rate is set to 0.01 and Adam [25]
is used as the optimization algorithm with decay rates β1 =
0.9 and β2 = 0.999. ReLU [26] is used as the activation
function for all layers, except for the output layer, which uses
a sigmoid function. Each model is trained for 400 epochs and
then evaluated. The DNN is trained to minimize the following
loss function:

J =

ωall∑
ω=1

|M(ω, τ)X(ω, τ)− S(ω, τ)|2, (7)

where M(ω, τ) is the predicted IRM, S(ω, τ) is the STFT
of the target clean signal, and ωall is the total number of the
frequency bins. The scale-invariant source-to-distortion ratio
(SI-SDR) [27] is used to evaluate the speech enhancement
performance. Fig. 3 shows the selected element indices for
the Sel MMREn and Sel Randn. It shows that many low-
frequency components are selected in Sel MMREn.

C. Results

Fig. 4 shows the relationship between the number of
multiplications and the speech enhancement performance.
The average improvement of the SI-SDR for each method
compared with that of the non-processed noisy signal. For
the conditions that have approximately the same numbers of
multiplications, in the other words, the difference between the
number of multiplications is less than twofold, the proposed
method Sel MMREn outperformed the conventional method
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Fig. 3. Selected frequencies in (a) Sel MMRE and (b) Sel Rand.

Fig. 4. The relationship between the number of multiplications and speech
enhancement performance. n represents the number of units in hidden layers.

Alln, except for the cases of n = 25. The average SI-
SDR improvements of the proposed methods Sel MMRE512,
Sel MMRE256, and Sel MMRE102 were 10.72, 10.50, and
10.26 dB, which were higher than those of the conventional
methods All512, All256, and All102, respectively, even though
the number of multiplications was slightly reduced in each
case. In addition, compared with the pair of All512 and
Sel MMRE256 and the pair of All256 and Sel MMRE102,
the proposed methods obtained better performance than the
conventional method with less than 1/3 the number of mul-
tiplications of the conventional methods. Additionally, it is
not shown in figures here, but the training loss in ALLn was
smaller than that in Sel MMREn for all n while the validation
loss in ALLn was almost larger than Sel MMREn except for
the case of n = 51. It shows that the proposed method may
enable the model to be generalized more to unseen conditions.
On the other hand, the conventional method Alln outperformed
Sel Randn in almost all cases except for Sel Rand51. In sum-
mary, these results indicate that reducing the input dimensions
by appropriate element selection achieved a better speech
enhancement performance than did the conventional method
even with the same or smaller number of multiplications.

Fig. 5 presents some spectrograms of clean speech
and processed signals as examples. We can also see
that Sel MMRE256 was denoised more than All256 and
Sel Rand256 from the spectrograms.

Fig. 5. (a) Spectrograms of the clean speech and signal processed by the (b)
conventional method All256, (c) proposed method Sel MMRE256, and (d)
Sel Rand256 for the mixture of speech and ’cafe/restaurant’ noise at SNR 5
dB.

To further investigate charasteristics of Sel MMRE and
Sel Rand, we compared frequency-wise SNRs defined as

SNR(ω) = 10log10

∑
τ |S(ω, τ)|2∑

τ |M(ω, τ)X(ω, τ)− S(ω, τ)|2
. (8)

Fig. 6 and Fig. 7 show the SNR improvements in
Sel MMRE512 and Sel Rand512 for all the evaluation data,
respectively. The SNR improvements in Sel MMRE512 in
Fig. 6 are larger than those in Sel Rand512 in Fig. 7 at most
of the frequencies except those around 6000 Hz and those
higher than 7000 Hz. As in Fig. 6, regardless of whether
the frequency is selected or not, the plotted points were
almost on a smooth curve. Although fewer points are selected
at higher frequencies, there is not a significant degradation
compared with those at lower frequencies. We can see that the
proposed algorithm estimated IRM with high accuracy only
from information at the selected frequencies.

The results indicate that the element selection method
proposed and demonstrated above is suitable for DNN-based
speech enhancement and can reduce the input dimensions of
the DNN effectively and efficiently. Further studies on element
selection will be needed to improve the performance and work
for extended situations such as when signals from several
frames are used as input features of the DNN.

VI. CONCLUSION

In this paper, we proposed a new method for low-
computational DNN-based speech enhancement. In the pro-
posed method, the input feature dimensions were reduced
by element selection. The elements that minimize the recon-
struction error of the linear autoencoder of the original input
signal were selected. The proposed method achieved better
performance than the conventional method even when fewer
numbers of multiplications were required. As a future task, set-
ting a more suitable element selection criterion in accordance
with the applied problem situation or the postprocessing of the
DNN may further improve the performance.
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Fig. 6. SNR improvement under the condition Sel MMRE512. The red circles
represent the SNR improvement at selected frequencies and the blue crosses
represent that at non selected frequencies.

Fig. 7. SNR improvement under the condition Sel Rand512. The meanings
of the symbols are the same as in Fig. 6
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