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Abstract—In classification tasks, the classification accuracy
diminishes when the data is gathered in different domains.
To address this problem, in this paper, we investigate several
adversarial models for domain adaptation (DA) and their effect
on the acoustic scene classification task. The studied models
include several types of generative adversarial networks (GAN),
with different loss functions, and the so-called cycle GAN which
consists of two interconnected GAN models. The experiments
are performed on the DCASE20 challenge task 1A dataset, in
which we can leverage the paired examples of data recorded using
different devices, i.e., the source and target domain recordings.
The results of performed experiments indicate that the best
performing domain adaptation can be obtained using the cycle
GAN, which achieves as much as 66% relative improvement in
accuracy for the target domain device, while only 6% relative
decrease in accuracy on the source domain. In addition, by
utilizing the paired data examples, we are able to improve the
overall accuracy over the model trained using larger unpaired
data set, while decreasing the computational cost of the model
training.

Index Terms—domain adaptation, acoustic scene classification,
GAN, cycle GAN, paired data, loss functions

I. INTRODUCTION

Acoustic Scene Classification (ASC) is the task of assigning
a predefined label to an audio segment that best describes
its contents. The historical preview of previous research and
general framework for ASC can be found in [1], and an
overview of current methods based on deep learning can be
found in [2]. The ASC is one of the main tasks of the DCASE
challenge1, and reviews of the most recent competitions can
be found in [3], [4]. In this paper, we focus on the specific
problem of mismatched domains (also known as the domain
shift), where the mismatch is primarily caused by the usage
of different recording devices. The methods addressing this
problem are known as domain adaptation (DA). In this work,
we approach the domain adaptation problem via generative
adversarial networks (GAN) [5] and their extension Cycle-
GAN [6]. Previous use of GANs in the context of ASC
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1http://dcase.community/

include generation of new training examples [7] and extraction
of features using deep convolutional GAN (DCGAN) [8]. A
system with domain adaptation using GAN for the down-
steam ASC task was first used in [9]. This method has been
further improved using Wasserstein distance GAN (WGAN),
with the underlying theoretical framework presented in [10].
Other recent approaches of DA for the ASC task include
spectrum correction [11], band-wise statistics matching [12],
neural label embedding, relational teacher-student learning
[13], channel domain conversion [14], and feature projection
[15]. The theoretical foundations of domain adaptation can be
found in [16], and a general framework for adversarial domain
adaptation is presented in [17].

In this paper, we present several methods to perform ad-
versarial domain adaptation, as pre-processing to the acoustic
scene classification from the recordings of several different
devices. In particular, we focus on GAN and cycle GAN
models, with additional loss terms, including identity and
transfer loss terms. During the training of adversarial models,
we also take advantage of the availability of paired data, an
aspect of the data set that not many studies exploit (by trying
to solve a harder, but more common, task with unpaired data),
and compare it to solutions based on unpaired training. In our
experiments, we use the DCASE20 task 1A dataset, which
consists of 9 different devices and 10 acoustic sound scenes,
as opposed to 4 devices only used in previous DACSE18 and
DCASE19 challenges. To asses the efficacy of DA, we perform
experiments with an ASC classifier trained only on source
data. Our goal is to investigate and subsequently identify the
models which perform best in the DA task, rather than to
find a solution which achieves the most accurate classification.
A comparison with other approaches such as independent
classification in each domain or application of transfer learning
to the classifier will be subject to future research.

The paper is structured as follows. In Sec. II we present the
models with different loss functions for adversarial domain
adaptation. Sec. III presents the network architectures, data
sets, training procedure, metrics. Results and discussion are
presented in Sec. IV, followed by a summary in Sec. V.
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II. DOMAIN ADAPTATION WITH GENERATIVE
ADVERSARIAL NETWORKS

In this section, we describe training objectives used in
presented models for domain adaptation. Inspired by the use
of the CycleGAN [6] for domain adaptation in the context
of speaker recognition [18], [19], we propose to perform
device characteristic translation of audio recordings made with
different target devices to a single source device. We start with
a simple generator trained on paired data of both domains,
then we add a domain discriminator to form a GAN model,
and finally, use CycleGAN consisting of two interconnected
GAN models.

Lets us first justify the decision to transform the input
data to the source domain. Transforming source data to the
target domain may seem to be an attractive solution since it
is easier to degrade high quality audio of the source, rather
than to reconstruct it. However, in the considered problem,
the target domain contains several different devices, while the
source domain consist of a single device, which makes domain
adaptation to the source domain a well-defined transformation.
In contrast, because of the existence of multiple devices in the
target data set, the opposite transformation is ill-defined and
would result in a transformation to some (most likely) non-
existing device domain.

A. Generator model
The generator GT→S is trained to learn the mapping from the

target domain T to the source domain S. The training data XS

and XT consists of elements from two separate distributions
xS ∼ pS(x) and xT ∼ pT (x) and each xS has a corresponding
(paired) xT element. To obtain desired domain mapping the
generator is trained using `1 loss between the paired examples

LT→S = ExT∼pT
[||GT→S(xT )− xS||1] . (1)

However, since during the test time, the domain of the tested
audio is unknown, the source audio should be invariant to the
transformation. This results in an additional loss component

LidT→S
= ExS∼pS

[||GT→S(xS)− xS||1], (2)

and thus the total loss function is defined as

Ltotal
G = LT→S + λid LidT→S

, (3)

where λid is the weighting coefficient for the identity loss.

B. GAN model
In GAN approach, beside the GT→S generator, there is also

a domain discriminator DS , which is trained to recognize
elements from domain S. We use the definition of GAN loss
function using the mean square error (MSE)

LGANT→S
=ExT∼pT

[DS(GT→S(xT ))
2] +

ExS∼pS
[(DS(xS)− 1)2] (4)

and similarly to the generator loss, additional components can
be added to the standard loss function. We propose to use the
general loss function of the GAN which is formulated as

Ltotal
GANT→S

= LGANT→S
+ λtr LT→S + λid LidT→S

, (5)

where λtr denotes the weighting coefficient for the transfor-
mation loss term. Similar loss (without LidT→S

component)
was used in [20].

C. CycleGAN model

Finally, the CycleGAN architecture consists of two inter-
connected GAN models. The first GAN is transforming the
target domain to the source domain, and the second GAN is
performing the opposite transformation. Note that although we
are interested only in a one-way mapping, CycleGAN learns
the mapping in both directions to allow regularization in the
form of cycle-consistency, which requires reconstruction of the
original features with minimum error. The cycle consistency
loss is defined as

LCyc =ExS∼pS
[||GT→S(GS→T (xS))− xS||1] +

ExT∼pT
[||GS→T (GT→S(xT ))− xT ||1] . (6)

Finally, we use the total loss for the proposed CycleGAN
which is defined as

Ltotal
CycGAN

=LGANS→T
+ LGANT→S

+ λcyc Lcyc

+λid (LidS→T
+ LidT→S

) , (7)

where λcyc denotes the weighting coefficient for the cycle
consistency loss term.

III. EXPERIMENTS AND EVALUATION

A. Network architectures for domain adaptation

The network architecture of the evaluated CycleGAN model
largely follows [18]. The generator network consists of the
downsampling and upsampling blocks. We choose the best per-
forming version with a skip connection that adds downsampler
input to the upsampler output, which allows to preserve the
input structure and forces the generator to learn the differences
between the source and the target domains. Our modification
to the architecture consists in removing the ReLU activation
function at the end of the residual block, which is in line
with the implementation of the original CycleGAN [6] and is
beneficial according to2. We also add a non-linear activation of
outputs tanh to the generator (similarly to the implementation
of [6]), and apply a sigmoid activation of outputs in the
discriminator, since we found in the preliminary experiments
that this makes the training more stable. Note that in this work,
the same generator architecture is used in all compared models
including GAN and the presented CycleGAN. As a result,
the generators of the trained models, which are later used in
pre-processing of the ASC task, differ only in the estimated
network parameters.

The implementation of all models is done with the Pytorch
Lightning framework [21].

2http://torch.ch/blog/2016/02/04/resnets.html
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B. Data set and preprocessing

The data set used in the experimental evaluation is a
development set of the TAU Urban Acoustic Scenes 2020
Mobile data set [22]. The development set contains data from
10 European cities and 10 acoustic scenes: airport, shopping
mall, metro station, pedestrian street, public square, a street
with a medium level of traffic, traveling by tram, traveling
by bus, traveling by an underground metro, and urban park.
Recordings are made with 9 different devices, from which 3
are real devices (A, B, C) and 6 are simulated devices (S1-S6).
The total amount of audio in the development set amounts to
64 hours and it consists of 10-second long recordings. Most
of the recordings (40h duration) are made with device A,
which is the high-quality equipment recording at a sampling
rate of 48kHz and with a 24-bit resolution, to which we will
refer to as a source. Other recordings (24h duration) are made
using the devices of lower audio quality, i.e., a mobile phone,
a GoPro camera, and several simulated devices obtained by
using simulated impulse responses (IRs) and dynamic range
control, to which we will refer to as the target recordings.

For every recording of the target device, there is an over-
lapping (paired) recording with the source device, but there
are recordings of the source device without the corresponding
target device recording. For that reason, our paired data set
contains only 19h of audio recordings as opposed to 39h
in unpaired data set. To be able to provide reliable results
without an access to the DCASE evaluation data set, we extract
separate validation set from the test split. Importantly, the test
set contains two devices that are not present in the training
and validation part (S5 and S6). As advised in the challenge
description, recordings with the same location ID are allowed
only in one split (for that reason some recordings of the new
devices are excluded from the new test split). Finally, our
validation set consists of 7 devices and about 100 recordings
per device such that the test set consists of 9 devices with
around 230 recordings per device.

Regarding the input features to the evaluated networks, the
data is transformed to the short-time Fourier (STFT) domain,
then a log-Mel filter bank is applied to the power in the STFT
domain as in [23] except that we use a lower number of
frequency bands, which amounts to 40 (as in [18]). The final
feature map is computed by taking the logarithm of the power
spectogram and rescaling it to the values in the range [-1, 1].

C. Acoustic scene classification

To evaluate the impact of the proposed domain adaptation
on acoustic scene classification (ASC), we choose a ResNet-
based classifier which is described in [23], with the code
shared by the authors3. We choose the simpler version of
the classifier without any data augmentation techniques and
with a 40-band log-Mel filter bank along with delta and delta-
delta features scaled to the range [0, 1]. Nonetheless, note that

3https://github.com/MihawkHu/DCASE2020 task1

the applied system achieves better results than the provided
DCASE baseline classifier4.

D. Training and testing

Beside using the paired data, we performed also experi-
ments with training using all available training data (using
all recordings as unpaired data), in which we make sure that
both source and target recordings always represent the same
acoustic scene. The ASC classifier is trained for 200 epochs
with the configuration provided by the authors, except for
changing the input dimensions to match our generator’s output
and monitoring the classifier accuracy with our validation set.
The ASC classifier is trained using only the source data. All
of our generative models use training hyperparameters similar
to the ones used in [17] and [18]. The model input is built of
fragments of Mel-spectrograms consisting of 11 contiguous
frames processed in batches of size 32. Adam optimizer is
used with β1 = 0.5 and β2 = 0.999. The learning rate is
set to 0.002 with a linear decay after 15 epochs. Loss weight
λcyc is set to 10, λid set to 1 or 5 and λtr is set to 5 or 0.
When training generators in practice we use the mean rather
than the sum in (7), dividing the loss by two. The models are
trained for no more than 200 epochs and their performance
is measured every third epoch as an accuracy obtained by the
ASC classifier on the validation set after domain adaptation
using the trained model.

E. Evaluated systems

In performed experiments, in total we evaluate 6 models
for domain adaptation: (i) the generator with loss given by (3)
with λid = 1 denoted as Generator, (ii) identity preserving
GAN given by (5) with λid = 5 and λtr = 0, denoted as
GANid, (iii) GAN with identity and transfer loss functions
given by (5) with λid = 5 and λtr = 5, denoted as GANid,tr,
(iv) GAN trained using unpaired data with an identity loss
given by (5) with λid = 5 and λtr = 0, denoted as GANall

id , (v)
cycle GAN with the loss given by (7) with λid = 5 and λcyc =
10, denoted as CycleGAN, and finally (vi) cycle GAN trained
using unpaired data with λid = 5 and λcyc = 10, denoted as
CycleGANall. For comparison, we also evaluate the system
without domain adaptation, which is denoted as NA.

F. Evaluation measures

To evaluate the impact of applying the investigated DA
methods on acoustic scene classification, we measure ASC
accuracy using a classifier trained using only the source data.
During the final prediction all test examples are transformed to
the source domain using the studied DA systems. To be able to
directly measure how DA affects the data, we also measure the
Log-Spectral Distance (LSD) [24] between the paired source
and target domain examples (to be able to calculate those
distances, we used also the data from source domain that was
not included in the cross-validation split). Since we use the
scaled log-Mel-spectograms during the network training, for

4https://github.com/toni-heittola/dcase2020 task1 baseline
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TABLE I: Accuracy of the ASC classifier for different models
performing domain adaptation tested on the source domain
data, target domain data, and only on devices unseen during
the model training (denoted as new devices).

DA method
Accuracy [%]

(source)
Accuracy [%]

(target)
Accuracy [%]
(new devices)

NA 74.89 25.06 15.55
Generator 70.04 19.23 19.87
GANid 75.33 25.88 15.76
GANid,tr 63.00 40.19 28.51
GANall

id 75.33 25.39 16.84
CycleGAN 70.48 41.56 24.62
CycleGANall 70.04 39.87 27.00

TABLE II: Mean log-spectral distance (LSD) between the
source and target domain recordings tested on the source
domain data, target domain data, and only on devices unseen
during the model training (denoted as new devices).

DA method
LSD [dB]
(source)

LSD [dB]
(target)

LSD [dB]
(new devices)

NA 0.000 1.399 1.668
Generator 0.073 0.723 1.188
GANid 0.055 1.375 1.640
GANid,tr 0.120 0.766 1.216
GANall

id 0.054 1.387 1.650
CycleGAN 0.082 0.813 1.138
CycleGANall 0.081 0.790 1.062

consistency we apply the analogous scaling to the log-Mel-
spectograms when computing the LSDs, which as a result
reduces those values to the range from 0 to 10 dB.

IV. RESULTS AND DISCUSSION

Table I presents the results of ASC accuracy obtained on
test data transformed to the source domain using the proposed
systems. We analyze accuracy separately for the data from
the source device (A), all other devices (B,C, S1-S6), and
devices not presented in training and validation splits (S5
and S6). Note that there is eight times more target devices
than source devices in the test set (see section III-B). We
also calculate the mean log-spectral distance (LSD) for the
domain adapted data on the same 3 subsets of the test data
set, those results are presented in Table II. We can observe that
the separately trained generator is able to obtain the smallest
LSD value for target devices. However, this does not lead
to the overall best performance in terms of the classification
accuracy, which is the worst among all 6 compared DA
models, with an improvement observed only for new devices.
The GAN model provides a steady, small, yet very consistent
increase in acoustic scene classification accuracy across all 3
subsets of the test data. In particular, a large increase in the
accuracy for target devices is observed when the transfer loss
function is additionally incorporated into the GAN, however,
this comes at a cost of reducing the accuracy for the source
data. This improvement could be attributed to the discriminator
that enforces generated outputs to be similar to source domain
and prevents finding poor local minima of (3). The best overall
performance can be observed for the CycleGAN models,

0
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Fig. 1: Normalized log-Mel-Spectograms of the source and
target recordings with and without the domain adaptation using
the investigated models for the example files park-paris-2424-
7265-a.wav and park-paris-2424-7265-s5.wav from the TAU
Urban Acoustic Scenes 2020 Mobile data set [22].

which achieve high accuracy for the target devices, while they
exhibit only a relatively small decrease in accuracy for the
source devices. As the most general, it takes advantages of
the aforementioned models and provides good generalization
to data from new, unseen devices. Finally, CycleGAN trained
using unpaired data is able to achieve high accuracy and low
LSD for new devices. Its performance on target devices is
close to GAN with transfer loss, but performs better for source
devices, probably thanks to having more data in the unpaired
data set. However, overall the better accuracy is obtained when
using CycleGAN trained with paired data. Note that using
paired data results in a smaller training data set, which also
allows for a faster training time. In order to provide additional
insights into the differences between the compared models for
domain adaption, we present normalized log-Mel-spectograms
before and after domain adaptation for an example audio
file. As can be seen from Fig. 1, DA using any of the two
CycleGANs clearly provides the best match with the source
domain, with the GAN with identity and transfer loss functions
and the pure generator also quite successfully performing
domain adaptation. The final result is shown in Fig. 2, in which
we present the 2D data visualization for two acoustic scenes
recorded using four different types of devices, before and after
domain adaptation using the best performing CycleGAN. As
can be observed, the data before DA is clearly clustered, with
clusters corresponding to the devices and sound scenes. After
domain adaptation, the clusters corresponding to the different
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Before DA

After DA

airport device A
airport device B
airport device C
airport device S5

bus device A
bus device B
bus device C
bus device S5

Fig. 2: T-SNE [25] visualization of domain adaptation effects
on the airport and bus test data recorded using four types of
devices, i.e., source device A and target devices B, C, and S5.
The top plot shows the data before DA and the bottom plot
shows the data after domain adaptation using the Cycle GAN.

devices are not easily separable anymore, which indicates that
device-related domain adaptation is successfully performed.

V. CONCLUSIONS

In this paper, we analyze the impact of domain adaptation
using six presented models on the acoustic scene classification
task. In particular, we compare the domain adaptation achieved
by the simple generator, three types of the GAN model,
and a CycleGAN, paying special attention to the impact
of training these models using paired and unpaired data.
The results of performed experiments show that the highest
accuracy is obtained using the CycleGAN, trained also with
the paired data as provided in the TAU Urban Acoustic Scenes
2020 Mobile data set. The best-performing domain adaptation
system achieved 66% of relative improvement in accuracy for
the data recorded using the target devices, with 6% relative
decrease in accuracy on the data recorded using the source
device.
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