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Abstract—We investigate the use of determined blind source
separation for sound event detection (SED) and classification
using multichannel recordings. Our proposed system appends
a single channel SED model to each of the output channels of
the separation algorithm. We expect the number of events per
channel to be reduced and overall performance increased. Such
a system allows different number of channels at training and
test time. We demonstrate the performance on the DCASE 2020
Sound Event Localization and Detection dataset. We compare
baseline training on single channel recordings to using different
combinations of 1, 2, 3, or 4 channel recordings. For the
separation, we compare both a traditional source prior and a
neural prior, trained without groundtruth signals available. First,
we show that with the former, performance increases when using
more channels. In addition, mixing different number of channels
during training yields a system that is robust across varying
number of channels. Second, while the training scheme proposed
for the tailored source prior is not found effective for separation,
it seems to be effective for data augmentation. This indicates that
multichannel training data is beneficial, even when the target
systems are single channel.

I. INTRODUCTION

Enabling machines to listen to and identify environmental
sounds has deep implications for accessibility [1], home mon-
itoring [2], [3], and security [4], [5]. This task is generally
known as sound event detection (SED) and is a lively area
of research [6]. It is defined as labeling semantic events and
marking their temporal location and duration in a signal. With
increasing data set sizes, deep neural network (DNN) based
multi-label classification models have received much attention,
e.g., convolutional neural networks (CNNs) [7], [8] and long
short-term memory (LSTM) [9], [10]. Convolutional recurrent
neural networks (CRNNs) [11], [12] have become a strong
baseline for neural approaches. More recently, self-attention
based models including Transformer [13] and Conformer [14]
have shown significant improvement in SED performance.

A particularity of SED is that it assumes that events can co-
occur in time, i.e., it is a multi-label classification problem.
One may conjecture that performing SED on the individual
sounds co-occurring separately might be easier than dealing
with their mixture. Hence, some approaches employ source
separation techniques as a pre-processing step, for example,
non-negative matrix factorization [15], [16]. This approach
was promoted for Task 4 of the DCASE2020 challenge
(“Sound event detection and separation in domestic environ-
ments”). However, only eight of the 54 proposed systems
made use of source separation, with the best one among those

ranking 15th. This is an indication that the role and benefits
of separation in SED is not yet fully understood.

All the approaches to SED described so far operate on sin-
gle channel recordings. However, the benefits of microphone
arrays for sound processing have long been recognized [17].
They can sense the spatial cues of the impinging sound
waves and have been widely applied for enhancement via
beamforming [18], direction of arrival estimation (DOA) [19],
and blind source separation (BSS) [20]. First steps towards
using spatial cues in SED have been taken in Task 3 of
the DCASE2019 and DCASE2020 Challenges, Sound Event
Localization and Detection (SELD). The goal of this task
is to perform jointly SED and DOA estimation of the de-
tected events. It is the only task of the DCASE challenge
using multichannel recordings [21]. The spatial information is
contained in the phase and amplitude differences between the
channels. Different methods have been proposed to integrate
this information in neural architectures for SELD, for example,
inter-channel time difference features [22], [23], histograms
of DOA over the time-frequency plane [24], or a gated
linear unit based network [25]. While all these prior works
have demonstrated the potential of multichannel recordings to
identify DOA of sound events, they have not explored their
potential to improve the detection performance itself.

In this work, we propose to use multichannel BSS as a pre-
processing step to improve SED performance. Independence-
based BSS allows to perform a linear separation, introduc-
ing minimal distortion [26]. We expect that after separation,
each output channel may contain only a single sound event
that will be easier to identify. We set out to verify this
hypothesis and measure the gain obtained. For the separation,
we use independent vector analysis (IVA) which allows to
deal with convolutive mixtures [27], [28] and is efficiently
implemented via majorization-maximization [29], [30]. This
proposed scheme based on BSS has the advantages to be
agnostic to the microphone locations (which need not be
known), and that the number of channels may be different
at training and test time.

Our contributions are as follows. Using the DCASE2020
Task 3 dataset [21], we train a baseline single channel SED
classifier. We also train classifiers on the same dataset, but
where IVA is applied to the input data prior to classification.
In the multichannel case, classification is done in parallel on
all output channels with the same classifier, and the results
aggregated by taking the maximum between all the channels.
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For the separation, we investigate both a traditional, data
agnostic, source model, and a DNN source model trained for
the task at hand [31]. For the latter, we propose a training
strategy that does not require groundtruth separated signals,
but only the existing Task 3 dataset. We try several ways of
combining the channels during training.

First, we find that separation is indeed effective to improve
the performance. Training of 4 channels recordings to which
IVA with the data agnostic prior has been applied yields the
best performance on 4 channel test data. In this case, the
F1 score is about 4% more than the baseline single channel
classifier. In addition, the same model can be applied to 2
and 3 channels recording with good performance. Our second
finding concerns the trained source prior for IVA. In this case,
we find that the training scheme proposed failed to yield an
effective source model, most likely due to confounding noise
present in the training signals. However, the SED classifier
trained with it exhibits the best single channel performance
overall. This indicates that remixing multichannel recordings
may serve as an effective data augmentation scheme.

The rest of this paper is organized as follows. Section II
introduces necessary elements of SED and BSS. We describe
our proposed methodology in Section III. Experiments and
their results come in Section IV, and we conclude in Section V.

II. BACKGROUND

We start by introducing the necessary background for blind
source separation with IVA. We denote vector and matrices
by bold lower and upper case letters, respectively. Further-
more, A> and AH are the transpose and conjugate transpose,
respectively, of matrix A.

Consider a reverberant mixture of K sources recorded by M
microphones. After applying the short-time Fourier transform
(STFT), a good model for the multichannel signal is,

xfn =

K∑
k=0

Afsfn, f = 1, . . . , F, n = 1, . . . , N, (1)

where xfn ∈ CM is the vector containing in its entries
the components at frequency f and time index n of each
microphones. The vector sfn is similarly constructed but
contains the components of each of the K sources. The entries
of the mixing matrix Af contain the transfer functions be-
tween sources and microphones at frequency f . For example,
(Af )mk is the f th component of the discrete Fourier transform
of the impulse response between source k and microphone m.

A. Independent Vector Analysis

Separation by IVA proceeds with finding a squared demixing
matrix W f ∈ CM×M , per frequency f , that when applied
to the input signal produces outputs that are statistically
independent. Let wH

fm be the mth row of W f . Then, we
define the outputs of the separation as the M spectrograms,

Y m ∈ CF×N , such that ymfn = (Y m)fn = wH
fmxfn.

(2)

Thus, IVA tries to ensure that the joint distribution of the
output spectrograms is the product of their marginals, i.e.,

p1,...,M (Y 1, . . . ,Y M ) =
∏M

m=1
p(Y m), (3)

where p( . ) is the probability density function of the outputs.
This strategy is concretely implemented by choosing a

model for p( . ) and applying maximum likelihood estimation.
This yields the following objective function,

`(W) =
∑

m
G(Y m)− 2N

∑
f
log |detW f | (4)

where W = {W f}Ff=1 and G(Y ) = − log p(Y ). AuxIVA,
[29], is an efficient algorithm to minimize (4) based on
majorization-minimization [32]. It can be applied when G(Y )
admits a surrogate function G+(Y , Ŷ ) such that

G(Y ) ≤ G+(Y , Ŷ ) =
∑

fn
ufn(Ŷ )|yfn|2 + c(Ŷ ), (5)

with equality if and only Y = Ŷ , and where ufn : CF×N →
R+ and c : CF×N → R. In this work, we use the iterative
source steering variant of AuxIVA that applies a series of rank-
1 update to the demixing matrix [30],

W f ←W f − vmfw
H
mf , (6)

for m = 1, . . . ,M , in order, with weight vector vmf ,

(vmf )k =

{∑
n rkfn ykfn (ymfn)

∗∑
n rkfn |ymfn|2 if k 6= m

1−
(

1
N

∑
n rkfn|ymfn|2

)−1/2
if k = m

(7)

where rkfn = ufn (Y k). This iterative algorithm can be
unrolled to obtain the structure described in Fig. 1 as part
of the whole system diagram. In this structure, it is clear
that contributions from the source, described by ufn(Y ) and
spatial model, i.e., (7), are cleanly separated. Several source
priors are possible. For example, a time-varying Gauss prior
gives ufn(Y ) = (

∑
f ′ |yf ′n|2)−1 [33]. It is also possible to

replace it with a DNN and learn its weights by backprop-
agating a separation loss through the iterations [31]. This
last strategy requires access to the clean separated signals.
Although these are not provided by the DCASE2020 Task 3
dataset, an alternative scheme is described in Section III-C.

III. PROPOSED METHODOLOGY

SED is overwhelmingly trained with and applied to single
channel audio. In this paper, we propose to use IVA to handle
the multichannel part. This strategy allows us to use a single
channel SED model with multichannel data. Fig. 1 illustrates
the overall structure of the proposed system, which can be
summarized as cascading IVA and SED, combined to some
tailored training strategies outlined in this section. Fig. 1 also
shows the details of the different parts of the system. The
separation operation is expected to reduce the number of
events present in a single channel at the output. We then apply
SED to each output channel separately. Finally, the output
probabilities for each channels are combined as,

pe,n = max
m=1,...,M

pe,mn, (8)
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Fig. 1. Structure of the proposed separation/classification network. On top, the overall system including both IVA and SED. On the bottom, details of the
architectures of the separation source model, and SED model. Blue blocks contain trainable parameters.

where pe,mn ∈ [0, 1]C is the event probability vector for
channel m and time index n, and C is the number of classes.
The rational to use the max is that if separation is successful,
an event might be detected in only one channel. If an event
is not present, then all channels should return a low value for
the probability, which is not increased by the max operation.

The final SED model that we obtain can be used with any
number of channels. This allows several use case that would
not be possible with a network architecture integrating both
separation and SED. Prominently, we can train with multi-
channel data and deploy on devices with a single microphone.

A. Architecture of the SED Model

The proposed method employs a CRNN-based SED
model, which takes a sequence of log Mel-spectrogram fea-
tures as input, and outputs the event probabilities Pe =
[pe,1, ...,pe,n, ...,pe,N ], pe,n ∈ [0, 1]C . Here, N and C are
the number of time frames and event classes, respectively. The
SED block consists of multiple CNN blocks, a BLSTM layer
and a fully connected layer with sigmoid activation. First, input
audio clips are transformed into log-mel spectrograms and fed
to the CNN blocks. The BLSTM layer transforms the outputs
of the CNN blocks by considering temporal dependencies and
obtains event features. The fully connected layers with sigmoid
activation acts as an event classifier and estimate the event
probability. The event feature of each frame is input to the
event classifier, and the event probabilities of each frame pe,n

are obtained. The model architecture is illustrated in Fig. 1.
In the proposed scheme, this structure is repeated on each of
the output channels of the separation, with shared weights.

B. Training Strategies

a) Baseline Approach: The most straightforward way to
combine SED and IVA is to train on single channel data.
At evaluation time, we pre-process the data with IVA and
apply the single channel SED model on each output channel
separately. This way, we expect that each output channel will
contain the same number of events, or less, which should be
beneficial. This approach only requires single channel training
data, and is applicable to both single and multi-channel data

at evaluation time. Its main benefit is to be able to re-use
any existing model for SED with multi-channel data. One
drawback is that the separation method may introduce some
artefacts not present in the original training data and decrease
the overall accuracy, instead of improving it.

b) Learning with Separated Events: The second strategy
we propose is to apply separation during training as well.
By doing so, the SED model will learn any peculiarities of
the separation method, such as how to handle permutations
often occurring with IVA [20]. We first run a fixed number
of IVA iterations and then apply SED to each channels
separately, as explained at the beginning of this section. With
multichannel data, we also have the opportunity to train with
different number of channels. With M -channels training data
available, we can also train on all the distinct subsets of
M ′ < M channels. Furthermore, training can be done only for
a fixed number of channels, or by including several number
of channels. This allows to train models that can be used on
devices with different number of channels.

C. Training a Separation Model

IVA has traditionally used a data independent source model
such as time-varying Gauss [33], or Laplace [29]. Recently, it
has been proposed to replace ufn(Y ) in (5) by a DNN [31].
Its weights are then trained by back-propagating the scale-
invariant signal-to-distortion ratio loss. This strategy could
allow to create a separation model tailored specifically for
the sound events that should be detected. However, it requires
the groundtruth separated events, which are not available for
the DCASE2020 SELD dataset [21]. Instead, we use the
annotations of the dataset to pick segments where only one
event occurs and remix them to obtain multi-event segments
with separated signals available. We pay attention to re-
mixing only segments recorded in the same room and keep
the channel order consistent. One problem of this method is
that the groundtruth separated events created this way still
have some additive noise background. This noise background
is distinct for both events and may be a source of overfitting.
Nevertheless, we use this method to train a separation network

1037



1 2 3 4
Channels

0.55

0.60

0.65

0.70

0.75
F1

Overall

1 2 3 4
Channels

Not overlapping events only

1 2 3 4
Channels

Overlapping events only

Training method
SED only, 1 ch.
IVA/SED, 4 ch.
IVA/SED, 1/2/3/4 ch.
IVA-DNN/SED, 4 ch.
IVA-DNN/SED, 1/2/3/4 ch.

Fig. 2. F1 score on the test split of the dataset. From left to right, overall performance, on non-overlapping events only, and on overlapping events only.
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Fig. 3. Comparison of F1 score on the validation and test split for the DNN
based separation.

with the DNN described in Fig. 1. The input spectrogram is
transformed to 32 channels mel-spectrogram, which is then fed
through two layers of BLSTM. The output of the BLSTM is
brought back to the original spectrogram size through a single
layer of 1× 1 transposed convolution. As in [31], we train on
two channel data only.

IV. EXPERIMENTS

In our experiments, we compare the classification accuracy,
via the F1 score, after training with the different strategies
described in the previous section. We use the development
dataset of the DCASE2020 SELD challenge [21]. It consists
of 600 samples, each 1min long, sampled at 24 kHz, and with
4 channels. They are divided in 6 equal-sized folds: 4 for
training, 1 for validation, and 1 for test. We use the training
splits to adjust the model weights, the validation for the
hyperparameters, and the test fold only a single time to obtain
the results reported in this section. All samples are divided
into 7.5 s long segments prior to processing. We further create
single, two, and, three channel segments by taking all possible
distinct subsets of channels as described in Section III-B. This
multiplies the number of samples by 4, 6, and 4, respectively,
compared to their original number. We use an STFT with a
1024-point Hamming window and half overlap.

We compare five different training regimes. SED only, 1ch.:
We train the SED model on the single-channel dataset. IVA
uses the time-varying Gauss source model [33]. IVA/SED,
4ch.: We train the SED model on the 4-channel dataset. IVA
uses the time-varying Gauss source model [33]. IVA/SED,

1/2/3/4ch.: Same as the previous one, but we mix all the
training data available. IVA-DNN/SED, 4ch.: We train the
SED model on the 4-channel dataset. IVA uses the source
model trained as described in Section III-C. IVA-DNN/SED,
1/2/3/4ch.: Same as the previous one, but we mix all the
training data available. We use the F1 score, i.e., the harmonic
mean of precision and recall [34], as a measure of the
classification performance. The classification threshold applied
to the event probability vector to obtain the final decision is
chosen as the one that yields the best performance on the
validation data. All experiments are performed on a Linux
workstation with an Nvidia V100 GPU.

A. Results

Fig. 2 shows the F1-score of all the trained models on the
test data as a function of the number of channels. We further
break down the results between segments that do not contain
overlapping events and those that do, (at most two in the
dataset).

First, we can verify that SED only, 1 ch. performs best on
single channel data, and that performance is actually hurt by
the application of IVA with more channels. Second, we see
that we can recover from this by training on the output of
separation. IVA/SED, 4 ch., although trained only on 4 channel
data yields progressively better performance going from 2
to 4 channels at test time. For 4 channels, this is the best
method overall. Without surprise, we can see that most of the
gain comes from much improved performance on overlapping
events. By training on a combination of number of channels
in IVA/SED, 1/2/3/4 ch., we actually surpass performance of
the single channel training for single channel test data. While,
this model still gives slightly better performance with more
channels, the performance for 3 and 4 channels is worse than
the previous model.

Surprisingly, using IVA with the pre-trained DNN model,
and training with all available channel numbers yields the best
single channel performance overall. However, the performance
does not increase with the number of channels as expected. We
conjecture that this is due to an overfit of the separation model
on the training data. As supporting evidence, we compare
the validation and test results in Fig. 3. There, we observe
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that using more channels indeed helps on validation, but not
test data. This may be due to the confounding background
noise present in the available reference signals for training the
separation model. However, it seems that using this method
yields an effective data augmentation strategy that exploits the
output of the (failed) separation step as new training data.

V. CONCLUSION

The preliminary results in this paper indicate that multi-
channel recordings are beneficial in several ways for SED.
First, they can be used to improve the detection accuracy at
test time, i.e., using more channels provides better detection
performance. We explored different ways of combining the
number of channels at training time to balance the performance
at test time. This shows that it is possible to train a single
model to be deployed on devices with varying number of
channels. Second, through a failed attempt at training a tailored
separation model for SED, we discovered that multichannel
recordings may be used for effective data augmentation. In
this case, we found large improvement at test time on single
channel recordings when including multichannel recordings
during training. However, there is room to improve the training
scheme when using separation in order to obtain the best
performance with any number of channels. In addition, we
believe the potential for data augmentation may lead to large
performance improvements in the future. We hope to fill out
these gaps in future work.
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