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Abstract—We present an extension of the widely
used Hierarchical Alternating Least Squares (HALS)
algorithm to solve Nonnegative Matrix Factorization
(NMF) problems using rational functions, in order to
unmix discretization of continuous signals. We observe
that the use of rational functions in NMF can signif-
icantly improve the quality of the reconstruction of
noisy data compared to the standard approach based
on vectors, and to recent continuous signal factorization
approaches using splines or polynomials. We also show
that our algorithm obtains state-of-the-art results in
the domain of multicomponent nanostructures spec-
trum image unmixing.

Index Terms—nonnegative matrix factorization (over
discretized signals), hierarchical alternating least
squares, (projection on) nonnegative rational functions

I. Introduction
Nonnegative Matrix Factorization (NMF) aims to ap-

proximately factorize an input data matrix Y as a product
of two lower rank and nonnegative matrices A and X.
Besides the dimension reduction, this operation allows
to denoise data and to describe each column of Y as a
linear combination (via the coefficients of the correspond-
ing column of X) of a few characteristic elements (the
columns of A) [3], [9]. The nonnegativity constraint allows
to retrieve more interpretable factors A and X. Indeed,
this constraint leads to a parts-based representation of
input matrix Y , relying only on additive combinations [9].
As a result, NMF is successfully used in various fields and
techniques such as image processing, text mining, blind
signals unmixing, etc. (see e.g. [5] and references therein).

In many practical situations, input matrix Y consists
of a discretization of continuous signals, i.e. each row
corresponds to a sampling of input signals at a given time
or value. These signals frequently present some structure,
such as smoothness. Therefore, one is interested in using
this prior by expressing these signals as a linear combina-
tion of signals sharing a similar structure, i.e belonging to
a class such as polynomials, splines or rational functions.
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Often, this class consists of finitely parametrizable
functions, i.e. functions that can be described using a
finite number of parameters. The advantages of using
finite parametrizable functions are two-fold: first, as these
functions are entirely described via their parameters, this
allows to recover data outside the sampling points of
the input signals. Second, the reduction of dimension is
stronger as the number of parameters is smaller than the
number of sampling points. Therefore, we focus on finitely
parametrizable functions in NMF which we denote as
"functional NMF" (F-NMF).

Consider a matrix Y ∈ Rm×n with n columns Y:i
containing samples of continuous signals on m points
τ = {τi}m

i=1. Without loss of generality, we consider in this
paper signals defined on the interval T = [τ1, τm] = [−1, 1].
Denote F the chosen set of finitely parametrizable func-
tions, and define F+ ⊂ F to be the subset of F containing
functions nonnegative on interval T . As input data are
only sampled at points τ , we can work on R+ ⊂ Rm

+ ,
the set containing the discretization on τ of all functions
belonging to F+, i.e. R+ = {f(τ )|f ∈ F+}, where
f(τ ) is a vector containing the value of function f at
each point τi. This leads us to the definition of F-NMF,
where we consider the Frobenius norm to evaluate the
reconstruction error.

Definition 1 (F-NMF). Given an input matrix Y ∈
Rm×n, a discretized nonnegative set R+ ∈ Rm

+ and a
factorization rank r ≥ 1, find a matrix A ∈ Rm×r

+
containing elements of R+ in each of its columns, i.e.
A:j ∈ R+, ∀j, and a nonnegative matrix X ∈ Rr×n

+ solving

min
A:j∈R+,X∈Rr×n

+

n∑
i=1

∣∣∣∣∣∣Y:i −
r∑

j=1
A:jXji

∣∣∣∣∣∣2. (1)

In this work, we focus on the analysis of F-NMF using
rational functions of fixed degree in F , which we denote
as R-NMF. The paper is organised as follows: Section II
motivates the choice of rational functions, and presents
a method to solve the problem, the hierarchical alter-
nating nonlinear least squares method, inspired from [2],
which repeatedly solves problems restricted to a single
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column/row of A/X. We confirm in Section III that meth-
ods based on rational functions are more accurate than
polynomials, splines or standard NMF on noisy datasets
containing real-world signals with some (near) singulari-
ties. Finally, we compare in section IV functional NMF
to state-of-the-art methods in the field of multicomponent
nanostructures spectrum images unmixing, and conclude
that using rational functions in NMF helps the algorithm
to be less sensitive to noise in this situation too.

II. Solve NMF using rational functions
A. Nonnegative rational functions

Univariate rational functions are by definition a ratio
between two univariate polynomials r(t) = a(t)/b(t). In
this work, we consider fixed and known degrees for both
the numerator and the denominator, denoted by d1 and d2
respectively. Rational functions can describe a wider range
of shapes and behaviors than polynomials or splines, like
signals with (near) singularities (see e.g., [12]). Moreover,
in our context of matrix factorization, they can ensure
that the factors are essentially unique when the poles are
distinct [4], which alleviates a well-known drawback of
nonnegative matrix factorization.

However, rational functions also have disadvantages
that make them harder to use in practice. They cannot be
expressed as linear combinations of a few basis elements.
Moreover, the space of rational functions of fixed numer-
ator and denominator degrees is not a vector space as the
addition is not closed: adding two rational functions with
same degrees often results in a rational function with other
degrees. For the same reason, this space is not convex.

To optimize over nonnegative rational functions, we
need to express in a compact way that the function is
nonnegative at every single point of an interval. First, ob-
serve that nonnegative rational functions can be described
without loss of generality using a nonnegative numerator
and denominator.

Second, it is known that any polynomial p of degree 2d
that is nonnegative on interval [-1,1] can be described as
[11]: p(t) = g1(t)2 + (1− t2)g2(t)2, where g1 and g2 are de-
gree d and d−1 respectively. Moreover, given a polynomial
basis

{
Πi(t)

}2d+1
i=1 , in our case the Chebyshev basis, the

vector of polynomial values p(τ ) can be computed as V 2dp
where p ∈ R2d+1 are the coefficients of the polynomial in
the chosen basis, and V 2d ∈ Rm×(2d+1) is a fixed matrix
defined as V 2d

i,j = Πj(τi).
Combining these observations, we can describe the val-

ues on discretization points τ of a rational function non-
negative on [−1, 1] with even numerator degree d1 = 2d′1
and denominator degree d2 = 2d′2 in the following way:

R(τ ) = (V d′1a1)2 + (1− τ 2) · (V d′1−1a2)2

(V d′2b1)2 + (1− τ 2) · (V d′2−1b2)2 + ε
; (2)

with a1 ∈ Rd′1+1,a2 ∈ Rd′1 , b1 ∈ Rd′2+1, b2 ∈ Rd′2 , and ε
preventing the denominator to go to 0. The square and di-
vision operators are performed element-wise, and ’·’ stands

for the element-wise multiplication. Similar formulations
can be found for nonnegative rational functions with odd
degrees and for other intervals. Note that ε can be fixed
to any number without loss of generality. Hence equation
(2) provides a description of the set R+ with 2d1 +2d2 +2
parameters.

B. The Hierarchical Alternating Nonlinear Least Squares
In Hierarchical Alternating Least Squares (HALS), the

columns of A and the rows of X are updated successively,
considering all the other elements as fixed [2]. This is there-
fore a 2r-block coordinate descent method. Thanks to the
quadratic structure of the objective function, minimizing
(1) when all variables are fixed except a column of A or
a row of X can be done by projecting the unconstrained
minimizer on the corresponding feasible region. This re-
gion is the set R+ of nonnegative rational functions with
fixed degrees (for A), or the set Rn

+ of nonnegative vectors
(for X). The unconstrained minimizer can easily be found
for both columns of A and rows of X by cancelling the
gradient. Algorithm 1 sketches this approach, using [·]S
for the projection on set S. The projection on Rn

+ is a
simple thresholding operation, setting all negative values
to 0, while the projection on the set of nonnegative rational
function is not trivial and discussed in next section. Equa-
tion (4) is separable, as the value of Xsi can be computed
independently from Xsj , but note that this is not the case
for A:s in equation (3).

Algorithm 1 R-HANLS
function R-HANLS(Y, A, X)

while Stop condition not encountered do
for A:s ∈ A do

A:s ←
[
Y (Xs:)> −

∑
j 6=s A:jXj:(Xs:)>

||Xs:||2

]
R+

(3)

for Xs: ∈ X do

Xs: ←
[
A>:sY −

∑
j 6=s A

>
:sA:jXj:

||A:s||2

]
Rn

+

(4)

return A, X

C. Projection on nonnegative rational functions
To perform step (3) in Algorithm 1 above, we first

compute z =
Y (Xs:)>−

∑
j 6=s

A:jXj:(Xs:)>

||Xs :||2 which we then
must project on R+, the set of τ -discretizations of rational
functions nonnegative on T with degree-d1 numerator and
degree-d2 denominator. In other words, we aim to find the
rational function a(t)

b(t) nonnegative on T that is closest to
z at the discretization points τ , which can be written as

min
a∈Pd1

+ ,b∈Pd2
+

∣∣∣∣∣∣∣∣z − a(τ )
b(τ )

∣∣∣∣∣∣∣∣2
2

with b(t) > 0, ∀t ∈ T, (5)

where Pd
+ is the set of degree-d polynomials nonnegative

on interval T = [τ1, τm] = [−1, 1].
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The above problem without the nonnegativity con-
straints a ∈ Pd1

+ , b ∈ Pd2
+ has been intensively studied in

the literature, see for example [10] and references therein.
However, to the best of our knowledge there is not much
work on projection or approximation using nonnegative
rational functions. In this work, we use equation (2) to
write the projection problem in an unconstrained way.
For example, when both numerator and denominator have
even degree d1 = 2d′1 and d2 = 2d′2, the projection becomes

min
a1,a2,
b1,b2

∣∣∣∣∣∣∣∣y(τ )− (V d′1a1)2 + (1− τ 2)(V d′1−1a2)2

(V d′2b1)2 + (1− τ 2)(V d′2−1b2)2 + ε

∣∣∣∣∣∣∣∣2. (6)
(we use ε = 10−16) and solve the problem using a standard
nonlinear least squares solver based on a trust-region
reflective algorithm.

This completes the description of our method, which
we call Hierarchical Alternating Nonlinear Least Squares
(HANLS) as step (3) involves solving a nonlinear least-
squares problem, problem (6).

III. Performance of R-HANLS
In this section, we first present a synthetic data set

created by mixing real-world signals. Then, we analyze
how well our algorithm R-HANLS performs on this data
set, and compare it to previous continuous factorization
approaches based on HALS over polynomials or splines
from [6], and to standard HALS on vectors.

A. Dataset
For our experiments, we use the reflectance signals of

Andesine, Celestine and Kaolinite, showed in Figure 1
(left). Those reflectance signals come from the U.S. Ge-
ological Survey (USGS) database [7] and are evaluated on
414 nonequally spaced data points. Those signals form the
matrix A ∈ R414×3

+ . We then generate matrix X ∈ R3×100
+

randomly following a normal distribution N (0, 1) and
replace the negative values by 0, so X is 50% sparse. The
data provided to the algorithms is then Y = AX+N where
N is additive Gaussian noise. Figure 1 (right) shows some
of the signals in Y with noise level 20dB. The presented
dataset is the one used in this section. We used ratio-
nal functions with numerator and denominator of degree
d1 = d2 = 10, the number of observations n is equal to 100,
and the noise level is 20dB. In all our experiments, when
comparing other methods to factorization over rational
functions with degrees d1 and d2, we consider polynomials
of degree d1 + d2 and splines of degree 3 with d1 + d2 − 1
interior knots, so that all approaches share the same
number of degrees of freedom (except standard HALS
which operates over unstructured nonnegative vectors).
The selected number of degrees of freedom was chosen
to deliver the best results on polynomials and splines,
and was not specifically tuned for rational functions. A
more in-depth analysis of the influence of this degree is
left as future work. Accuracy of the tested methods on

obtained factors A′, X ′ is evaluated trough the relative
error computed as

(∑
i ||Y:i −

∑
j A
′
:jX
′
ji||2

)
/
(∑

i ||Y:i||2
)
.
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Fig. 1. Left: Reflectance signals of Andesine (blue), Celestine (or-
ange) and Kaolinite (green). Right: Example of mixing of those
signals. Each of the five signals is a column of Y .

B. Accelerate the projections in R-HANLS
R-HANLS, described in Algorithm 1, is an iterative al-

gorithm that uses a projection at each iteration. An impor-
tant characteristic of this algorithm is that the successive
iterates for the same block tend to become close to each
other. Therefore, we should consider exploiting knowledge
from previous iterations: here, we will try to initialize the
least squares solver with the previous projection.

Relative error with respect to time
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Fig. 2. Evolution of the relative error with respect to time, using R-
HANLS. Left figure contains error w.r.t Y , the noisy data, while on
right figure it is computed w.r.t the ground truth AX (not provided
to the algorithm). First iteration is omitted to improve readability.

Figure 2 compares the performance of R-HANLS us-
ing or not information about previous projection. We
consider a tolerance of 10−4 in the least squares solver.
Using information about previous projection appears to
significantly accelerate the convergence of the algorithm
and reduces its oscillations, but is slightly less accurate.
This behavior is probably due to the fact that the set
of rational functions of fixed degree is not convex, and
using random initialization can allow to escape from a local
minimum from time to time. Nevertheless, we initialize the
projection algorithm with its previous value in our further
experiments. Note that the nonconvexity of the constraint
also prevents us from concluding about the convergence
of the algorithm to a stationary point, but the following
tests highlight that in practice this does not prevent the
algorithm to obtain interesting results.
Figure 2 also shows that our algorithm can efficiently

denoise data. Indeed, relative error obtained w.r.t. the
ground truth (right figure) are smaller than the relative
error w.r.t. the noisy data (left) provided to the algorithm.
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C. Comparison of the methods
Here we compare R-HANLS to existing continuous fac-

torization approaches based on polynomials and splines,
and to standard HALS. Figure 3 shows boxplots of the rel-
ative error (computed with respect to the exact data AX,
not provided to the algorithm) and the computation time
for different methods. The boxplots summarize the results
of 10 tests where each algorithm is run 10 times with differ-
ent initializations. We observe that using functional NMF
is more accurate than using standard NMF, and among
functional approaches the use of rational functions leads
to the most accurate results. This is remarkable as the
real-world signals used to generate the mixed inputs were
not particularly close to rational functions. In terms of
computational time, standard HALS is the fastest method,
and R-HANLS is a bit slower than HALS using splines or
polynomials. Nevertheless, all methods are able to solve
the problem in less than 30 seconds.
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Fig. 3. Boxplots of the relative error (left) and the computation
time (right), for different models solving NMF problem on mixture
of signals presented in Figure 1.

IV. Application to spectrum images unmixing
We also tested our method to unmix difficult spec-

trum images of multicomponent nanostructures from [1]
and [8], where the authors use a method called MCR-
LLM (Multivariate Curve Resolution by Log-Likelihood
Maximization) to solve the unmixing problem. We apply
the same preprocessing (see the cited papers for more
information about the data sets), and scale the input data
matrix so that each row has unit Manhattan norm and
normalize the rows of matrix X in the decomposition (this
is done without loss of generality in NMF by scaling A so
that AX stays unchanged). We use k-means clustering to
initialize weights in X, and matrix A is initialized using
the unconstrained minimizer corresponding to this fixed
X (an initial iterate that does not satisfy the constraints
does not cause any trouble in our implementation).

A first one-dimensional data set [1] contains the en-
ergy loss of the components compared to their position.
The shape of such an energy loss does not look like a
rational function. However, the relative abundance of each
element should vary smoothly with its position, hence we
will approximate it using rational functions of degrees
d1 = d2 = 20. Because we use a random initialization,
we report the best result out of ten runs for each method
(as noise seems to be Poisson [1], we use the Kullback-
Leibler divergence on the error to pick the best out of the

ten tests). Then we compare the results between different
methods visually, as depicted Figure 4.
We observe that R-NMF gives results similar to those

of MCR-LLM, except that the relative abundances are
smoothed thanks to the rational functions. When using
standard NMF the result displays more noise, and features
several unexpected peaks for all abundances, especially
for SiO2 (blue curve). Using splines or polynomials also
leads to some noise but with a lower level than standard
NMF. However our lack of knowledge in chemistry does
not allow us to clearly determine the best method between
MCR-LLM and R-NMF.

For the next two-dimensional dataset [8], we reshape
all images into vectors to form the input matrix. This
time, the dataset contains the binding energy (instead of
the energy loss), which resembles rational functions more.
Furthermore relative abundances are computed in a 2D
space, so that we cannot properly represent them with
univariate rational functions. Therefore, we use rational
functions to represent the binding energy, with degrees
d1 = d2 = 44, and report again on the best out of ten
tests in Figure 5.
All methods are able to discriminate the three categories

C0, C1 and C2 in the abundance maps, and there is no
noticeable difference between the three approaches using
NMF. This time, NMF methods obtain abundances that
appear less discriminate than MCR-LLM. Note however
that other state-of-the-art methods presented in [8] are
unable to distinguish between the three categories, so that
our method still makes sense in this case.
Recall that in the 1D-case we could use the smoothness

of changes in relative abundances to improve the results.
To do the same for the 2D-case would require to repre-
sent relative abundances with smooth bivariate functions.
This would result in a functional NMF model involving
(possibly multivariate) functions in both factors A and X.

V. Conclusion
We have introduced R-NMF, a factorization model

based on rational functions to unmix discretized signals.
When comparing with standard NMF or with NMF over
polynomials or splines, we found that the use of rational
functions outperforms existing methods in terms of denois-
ing and reconstruction ability, at the cost of an increase
in computational time. This better reconstruction may
be due to the wider range of representation of rational
functions as well as their ability to present an essentially
unique factorization. Our algorithm is also able to obtain
results similar to specialized state of the art algorithms
for spectral unmixing of multicomponent nanostructures.
We also saw from that application that, for some datasets,
both factors possess exploitable structural properties. In-
vestigation of this bi-functional NMF model, as well as the
inclusion of multivariate signals in the factors, is left for
future work.
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Using standard HALS
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Using HALS with splines
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Fig. 4. Results of different methods on 1D dataset. Result obtained using polynomials were close to the ones obtained with splines.
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Fig. 5. Results on 2D dataset. Results obtained using splines, polynomials and standard HALS were very close to results of R-HANLS.

References
[1] Nadi Braidy and Ryan Gosselin. Unmixing noisy co-registered

spectrum images of multicomponent nanostructures. Scientific
reports, 9(1):1–8, 2019.

[2] Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. Hier-
archical ALS algorithms for nonnegative matrix and 3D tensor
factorization. In International Conference on Independent Com-
ponent Analysis and Signal Separation, pages 169–176. Springer,
2007.

[3] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-
ichi Amari. Nonnegative matrix and tensor factorizations:
applications to exploratory multi-way data analysis and blind
source separation. John Wiley & Sons, 2009.

[4] Otto Debals, Marc Van Barel, and Lieven De Lathauwer.
Löwner-based blind signal separation of rational functions
with applications. IEEE Transactions on Signal Processing,
64(8):1909–1918, 2015.

[5] Nicolas Gillis. The why and how of nonnegative matrix fac-
torization. Regularization, Optimization, Kernels, and Support
Vector Machines, 12(257), 2014.

[6] Cécile Hautecoeur and François Glineur. Nonnegative matrix
factorization over continuous signals using parametrizable func-
tions. Neurocomputing, 2020.

[7] R Kokaly and al. USGS spectral library version 7, 2017.
[8] Francis B Lavoie, Nadi Braidy, and Ryan Gosselin. Including

noise characteristics in mcr to improve mapping and component
extraction from spectral images. Chemometrics and Intelligent
Laboratory Systems, 153:40–50, 2016.

[9] Daniel D Lee and H Sebastian Seung. Learning the parts
of objects by non-negative matrix factorization. Nature,
401(6755):788, 1999.

[10] Yuji Nakatsukasa, Olivier Sète, and Lloyd N Trefethen. The
AAA algorithm for rational approximation. SIAM Journal on
Scientific Computing, 40(3):A1494–A1522, 2018.

[11] Victoria Powers and Bruce Reznick. Polynomials that are posi-
tive on an interval. Transactions of the American Mathematical
Society, 352(10):4677–4692, 2000.

[12] Lloyd N Trefethen. Approximation Theory and Approximation
Practice, Extended Edition. SIAM, 2019.

1049


