
Efficient Implementation of Stochastic Proximal
Point Algorithm for Matrix and Tensor Completion

Aysegul Bumin and Kejun Huang
Department of Computer and Information Science and Engineering, University of Florida

Email:(aysegul.bumin,kejun.huang)@ufl.edu

Abstract—We propose an efficient implementation of the
stochastic proximal point algorithm (SPPA) for large-scale non-
linear least squares problems. SPPA has been shown to converge
faster and more stable than the celebrated stochastic gradient
descent (SGD) algorithm, and its many variations. However,
the per-iteration update of SPPA itself is defined to be an
optimization problem and has long been considered expensive.
In this paper, we show that for nonlinear least squares problems,
each iteration of SPPA can be carried out efficiently. Using Gauss-
Newton along with the help of the kernel trick, we get an efficient
implementation of the SPPA updates with the same order of
complexity as SGD. The result is encouraging that it admits
more flexible choices of the step sizes under similar assumptions.
The proposed algorithm is elaborated for the problem of matrix
and tensor completion. Real data experiments showcase its
effectiveness in terms of convergence compared to SGD and its
variants.

I. INTRODUCTION

Stochastic (sub)gradient descent (SGD) and its variants
have been widely used in the algorithm design for large-scale
machine learning problems [1]. There are two main reasons for
preferring the stochastic methods. On the one hand, obtaining
the full gradient information may be too costly due to large
size of the data set; on the other hand, in machine learning it
is typically not necessary to solve the formulated problem to
very high accuracy, since the ultimate goal of most tasks is
to generalize well on unseen test data rather than fitting the
training data. As a result, stochastic algorithms such as SGD
have gained tremendous popularity.

Many methods have been developed as extensions of
the plain vanilla SGD algorithm in order to accelerate its
convergence rate. There is a particular line of research which
focuses on reducing the variance of the stochastic gradient,
resulting in the famous algorithms such as SVRG [2] and
SAGA [3], however they suffer from significant time/memory
complexities. Looking at a more recent past, there is another
line of research based on adaptive learning schemes such as
AdaGrad [4] and Adam [5], which are shown to be more
effective in keeping the algorithm fully stochastic and light-
weight.

A. Stochastic proximal point algorithm (SPPA)

In this work, we consider a different type of stochastic
algorithm called the stochastic proximal point algorithm
(SPPA), also known as incremental proximal point method
[6], [7] or stochastic proximal iterations [8]. Consider the

following optimization problem with the objective function in
the form of a finite sum of component functions

minimize
)∈R3

1
=

=∑
8=1

ℓ8 ()) = ! ()). (1)

SPPA takes the following simple form:

Algorithm 1 Stochastic proximal point algorithm (SPPA)

1: initialize)0, C ← 0
2: repeat
3: randomly draw 8 from {1, . . . , =}
4:) C+1 ← arg min) _Cℓ8 ()) + (1/2)‖) −) C ‖2
5: C ← C + 1
6: until convergence

The update rule in line 3 is called the proximal operator of
the function _Cℓ8 evaluated at) C , and is sometimes denoted
as Prox_Cℓ8 () C). This is the stochastic version of the proximal
point algorithm, which dates back to Rockafellar [9]. Due
to the abstraction of the per-iteration update rule, SPPA is
not as extensively applicable as SGD. It is also asking for
more information from the problem than merely the first-
order derivatives. However, with the help of more information
inquired, there is also hope that it provides faster and more
robust convergence guarantees.

Convergence analyses of SPPA have been conducted mostly
on convex problems [6], [8], [10]. The studies show that SPPA
is much more robust to instabilities, and converges similar
to SGD for convex problems. Most authors also accept the
premise that the proximal operator is sometimes difficult to
evaluate, and thus proposed variations to the plain vanilla
version to handle more complicated problem structures [11],
[12], [13], [14].

There exists some more recent work focusing on convergence
analyses of SPPA for nonconvex optimization problems [14],
[15], [16]. The analyses performed by [14] and [15] are
based on an imaginary sequence (that is not computed in
practice) {)̃ C } as)̃ C = arg min) _C! ())+(1/2)‖)−) C ‖2, i.e., the
proximal operator of the full loss function from the algorithm
sequence {) C }. The results show that this imaginary sequence
{)̃ C } converges to a stationary point in expectation. More
recently, [16] as well showed stationary convergence of SPPA
for a specific problem with convex objective and nonconvex
constraints.

1050ISBN: 978-9-0827-9706-0 EUSIPCO 2021

II. SPPA-GN FOR NONLINEAR LEAST SQUARES

The main contribution of this paper is to apply SPPA to a
large family of nonconvex optimization problems and show
that the seemingly complicated proximal operator update can
still be efficiently obtained, namely the nonlinear least squares
(NLS) problem.

A NLS problem takes the following form

minimize
)∈R3

1
=

=∑
8=1

1
2
(i8 ()))2, (2)

where each i8 is a general nonlinear function with respect
to). It is a classical nonlinear programming problem [17],
[18] with many useful applications as of today, including least
squares neural networks [19], where each i8 corresponds to
the residual of fitting for the 8th data sample for regression.
We will show that problems of this form can be efficiently
executed by SPPA, despite its seemingly complication.

In this section we describe how to efficiently evaluate the
proximal operator, which is the core computation of SPPA,
when it is applied to NLS (2). As we will see, the update
rules are surprisingly simple but very powerful, leading to
a per-iteration complexity that is almost as efficient as one
SGD step. However, since it is in the framework of SPPA,
the resulting convergence will be a lot more robust. We also
describe in detail how it can be applied to matrix completion
and tensor completion.

A. General description

To apply SPPA to a general NLS problem, the main challenge
is to efficiently evaluate the proximal operator

) C+1 ← arg min
)

_C

2
(i8 ()))2 +

1
2
‖) −) C ‖2. (3)

Notice that this function itself is a nonlinear least squares
objective, although with only one component function together
with the proximal term.

The traditional wisdom to solve a NLS problem is to apply
the Gauss-Newton (GN) algorithm: at each iteration, we first
take a first-order approximation of the vector-valued function
inside the Euclidean norm, and set the update as the solution
of the approximated linear least squares problem. It is a well-
known algorithm that can be found in many standard textbooks,
e.g., [17], [20], [18].

To apply GN to (3), we first take linear approximation of
i8 at the current update) as

i8 ()) ≈ i8 ()) + ∇i8 ())>() −)),

and set the solution of the following problem)+ as the next
update

minimize
)

_C

2
(i8 ()) + ∇i8 ())>() −)))2 +

1
2
‖) −) C ‖2. (4)

Obviously, (4) has a closed form solution

)+ =) C −
(

1
_C

O + g8g>8
)−1

g8 (i8 ()) − g>8 () −) C)), (5)

Algorithm 2 SPPA-GN

1: initialize)0, C ← 0
2: repeat
3: randomly draw 8 from {1, . . . , =}
4:)+ ←) C
5: repeat
6:) ←)+

7:)+ ←) C − i8 ())−∇i8 ())>()−)C)
_−1
C +‖∇i8 ()) ‖2

∇i8 ())
8: until convergence
9:) C+1 ←)+, C ← C + 1

10: until convergence

where we denote g8 = ∇i8 ()) to simplify notation. Notice
that the matrix to be inverted in (5) has a simple “identity
plus rank-one” structure, implying that it can be efficiently
computed in linear time. Using the “kernel trick” [18, pp.332]

(G>G + UO)−1G> = G>(GG>+ UO)−1, (6)

update (5) simplifies to

)+ =) C −
i8 ()) − ∇i8 ())>() −) C)

_−1
C + ‖∇i8 ())‖2

∇i8 ()). (7)

As we can see, each GN update only takes O(3) flops, which
is as cheap as that of a SGD step. To fully obtain the proximal
operator (3), one has to run GN for several iterations. However,
thanks to the superlinear convergence rate of GN near its
optimal [20], which is indeed the case if we initiate at) C
because of the proximal term, it typically takes no more than
5–10 GN updates. The detailed description of the proposed
algorithm, which we term SPPA-GN, for solving general NLS
problems is shown in Algorithm 2.

In the rest of this section, we describe how SPPA-GN can
be applied to two widely used unsupervised learning problems,
matrix completion and tensor completion.

B. Application to matrix completion

In matrix completion, one is given a subset of entries from a
big matrix ^ ∈ R<×=, and the goal is to infer the unseen entries
based on the assumption that the rank of ^, : , is much smaller
than its ambient dimension. To do so, a standard problem
formulation is to find factor matrices G ∈ R<×: and H ∈ R=×:

such that ^ ≈ GH> for the given set of data entries [21], [22],
[23]. Specifically, the problem is formulated as

minimize
G,H

1
|S|

∑
(8, 9) ∈S

1
2
(a>8b 9 − -8 9)2, (8)

where a8 and b 9 are the 8th row and 9 th row of G and H,
respectively, and S denotes the index set of the available entries
for training. After solving (8), we use the product GH> to
predict the unseen entries from ^. Problem (8) is an instance
of NLS.

To apply SPPA-GN for solving (8), we only need to
specify the corresponding ∇i8 9 (G, H). Notice that the (8, 9)th

1051

Algorithm 3 SPPA-GN for matrix completion

1: initialize G and H, C ← 0
2: repeat
3: randomly draw (8, 9) from S

4: a ← a8 , b ← b 9
5: repeat

6: W ←
a>b 9 + a>8b − a>b − -8 9
_−1
C + ‖a‖2 + ‖b‖2

7:

{
a ← a8 − Wb
b ← b 9 − Wa

8: until convergence
9: a8 ← a, b 9 ← b, C ← C + 1

10: until convergence

component only involve the 8th row of G and the 9 th row of
H. Let) = (a, b) and

i8 9 ()) = a>b − -8 9 ,

it is easy to see that

∇ai8 9 = b, ∇bi8 9 = a.

We let a8 and b 9 denote the) C that is obtained outside of the
GN iterates, and a and b denote the current GN update. The
scaling factor in front of ∇i in line 7 of Algorithm 1 equals
to

a>b 9 + a>8b − a>b − -8 9
_−1
C + ‖a‖2 + ‖b‖2

.

These suffice to fully characterize SPPA-GN for matrix
completion, as shown in Algorithm 3.

C. Application to tensor completion

A tensor is a data array with more than two indexes, which
has been proven extremely useful for data with multiple
modalities [24], [25], [26]. Simply put, it can be considered
higher-order extension of a matrix.

Similar to matrix completion, the task of tensor completion
is to fit a low-rank tensor to an incomplete data tensor, and
use the low-rank model to predict the values of the unobserved
entries. There are multiple definitions of a tensor rank, such
as the CP-rank and the multi-linear (Tucker) rank, leading to
different tensor completion techniques [27], [28], [29]. In this
paper we focus on the CP-rank derived from the canonical
polyadic decomposition of a tensor [30].

We consider a general order-� tensor ^ of size �1 ×
· · · × �� . A tensor has rank if there are � matrices
G(1) ∈ R�1× , . . . , G(�) ∈ R��× such that the (81, . . . , 8�)th
entry equals to〈

a (1)
81
, . . . , a (�)

8�

〉
=

:∑
:=1

�∏
3=1

G(3) (83 , :),

where we use 〈·〉 to denote the “inner-product” between �

vectors, and a (3)
83

denotes the 83th row of the factor matrix G(3) .
We use a boldface letter i to denote the index of a particular

Algorithm 4 SPPA-GN for tensor completion

1: initialize G(1) , . . . , G(�) , C ← 0
2: repeat
3: randomly draw (81, . . . , 8�) from S

4: for 3 = 1, . . . , � do
5: a (3) ← a (3)

83
6: end for
7: repeat
8: for 3 = 1, . . . , � do
9: a (−3) ← a (1) ∗ · · · ∗ a (3−1) ∗ a (3+1) ∗ · · · ∗ a (�)

10: end for
11: W ←

∑
3 〈a (3) , a (−3)〉 − (�−1)〈a (1), . . . , a (�)〉 − - (i)

_−1
C +

∑
3 ‖a (−3) ‖2

12: for 3 = 1, . . . , � do
13: a (3) ← a (3)

83
− Wa (−3)

14: end for
15: until convergence
16: for 3 = 1, . . . , � do
17: a (3)

83
← a (3)

18: end for
19: C ← C + 1
20: until convergence

entry of ^, i.e., i = (81, . . . , 8�). With these notations, we can
formulate the tensor completion problem as

minimize
G(1) ,...,G(�)

∑
i∈S

(〈
a (1)
81
, . . . , a (�)

8�

〉
− - (i)

)2
, (9)

where again S denotes the index set of available entries of the
data tensor ^. This is another instance of NLS.

Similar to the matrix case, we only have to specify the
corresponding ∇ii to be able to fully execute SPPA-GN. We
use ∗ to denote element-wise multiplication of two vectors,
and define

a (−3) = a (1) ∗ · · · ∗ a (3−1) ∗ a (3+1) ∗ · · · ∗ a (�) .

It is easy to see that

∇a (3) ii = a (−3) .

Furthermore, the scaling factor in front of the gradient in
line 7 of Algorithm 1 equals to∑

3 〈a (3) , a (−3)〉 − (� − 1)〈a (1)
81
, . . . , a (�)

8�
〉 − - (i)

_−1
C +

∑
3 ‖a (−3) ‖2

The resulting SPPA-GN for tensor completion is fleshed out
in Algorithm 4. As a sanity check, when � = 2, this algorithm
recovers the aforementioned SPPA-GN for matrix completion.

III. EXPERIMENTS

We now show some real data experiments to demonstrate
the effectiveness of the proposed SPPA-GN algorithm applied
to matrix and tensor completions. We compare our proposed
algorithm with three variants of SGD: the original version with
various step strategies, AdaGrad [4], and Adam [5], with the

1052

default settings suggested in their original paper. We carefully
coded all the algorithms, unless otherwise mentioned, in Python.
All the experiments are performed through Jupyter Notebook
on a Linux Desktop with Intel i7 cores vPro 8th Gen and 16
GB of RAM.
Remark. Since the main theme of this paper is to show that
SPPA, a generic algorithmic framework with abstract definition
of its updates, can be efficiently implemented for nonlinear
least squares, we only compared our method to other stochastic
algorithms for the same formulations (8) and (9). We are aware
that there are other formulations for matrix/tensor completion,
such as those based on convex relaxations [31], [27]. The
purpose of our experiments is not to achieve more accurate
predictions in completion. We try to demonstrate that for
the same basic formulations, SPPA achieves a much faster
convergence rate than other stochastic algorithms.

A. Matrix completion on MovieLens

We test the matrix completion performance on the Movie-
Lens data set [32]. Specifically, all algorithms are test on the
ml-latest-small file, which consists of approximately
100,000 ratings and 3,600 tag applications applied to 9,000
movies by 600 users. The data set is split into training/testing
by the creator. We ran all algorithms by drawing samples from
the training set, and we evaluate the mean squared error on
the test set.

As mentioned before, all algorithms are implemented by
ourselves except for SGD for matrix completion, which is
adopted from Albert Au Yeung’s blog1. In recommendation
systems and collaborative filtering people usually add bias
terms to improve prediction accuracy, which is included in
this implementation. However, for fair comparison, these bias
terms are set to be zeros in our experiment.

The convergence plots on the test set are shown in Figures
1 and 2 for two different ranks. In all Figures, the label “Best
y” shows the constant value that gives the best performance
is y, and the labels 1/t and 1/sqrt(t) show that the step size is
diminishing with rates 1/t and 1/sqrt(t) respectively. As we can
see, SPPA indeed converges the fastest for various step size
choices. Interestingly, the performance of SGD comes second
best, outperforming AdaGrad and Adam. Our experience is that
AdaGrad and Adam did work well on synthetic data set when
the data matrices are indeed approximately low rank. However,
on real data they do not perform as well as one would expect.

B. Tensor completion on Facebook wall posts

We test the tensor completion performance on the Facebook
wall posts data set2, which consists of wall post records of ap-
proximately 47,000 Facebook users over the span of more than
years. We form a 46952×46951×1592, with the (8, 9 , :) entry
indicating the number of wall posts user 8 wrote to user 9 on day
: . This can be treated as a tensor completion problem because
not all user interactions are in the form of public wall posts,

1http://www.albertauyeung.com/post/python-matrix-factorization/
2http://konect.uni-koblenz.de/networks/facebook-wosn-wall

Fig. 1: MovieLens data with rank 10.

Fig. 2: MovieLens data with rank 20.

but we might discover unrevealed relationships between people
by fitting a low-rank tensor to the observed wall post counts.

In this case we randomly sampled 10% of the tensor
entries and use them as the test set to evaluate the prediction
performances of various stochastic algorithms. The samples that
train the model are drawn from the rest of the available entries.

The convergence plots for this data set is shown in Figures 3
and 4 for two different ranks. As we can see, the performance
of these algorithms are consistent with how they did in the
matrix case, although the data set has been completely changed.
SPPA with constant step size converges the fastest at the
beginning, although the other algorithms tend to swamp at a
bigger objective value. SPPA performed similarly with different
constant step sizes, the constant step size in Figures 3 and 4
is 0.1. The performance of SPPA with diminishing step size is
closer to the SPPA with constant step size in lower rank setting.
Being the second best, SGD performed comparably better than
other algorithms with constant step size 0.1, converging not
as fast at the beginning, but eventually converging to a more
accurate solution.

IV. CONCLUSION

In this paper we presented an efficient implementation of
the stochastic proximal point algorithm (SPPA) for nonlinear
least squares problems. The specific approach to efficiently

1053

Fig. 3: Facebook wall posts data with rank 10.

Fig. 4: Facebook wall posts data with rank 20.

evaluate the proximal operators is based on the Gauss-Newton
(GN) algorithm with a twist of the kernel trick, hence the name
SPPA-GN. The resulting algorithm has similar per-iteration
complexity to that of SGD, while enjoying faster and more
robust convergence under milder conditions. The algorithm
was elaborated on two important problems, matrix and tensor
completion, with implementation details fully driven in the
paper. Real data experiments on the MovieLens data and
Facebook wall posts data showed the effectiveness of SPPA-
GN.

REFERENCES

[1] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.

[2] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Advances in Neural Information
Processing Systems, 2013, pp. 315–323.

[3] A. Defazio, F. Bach, and S. Lacoste-Julien, “Saga: A fast incremental
gradient method with support for non-strongly convex composite
objectives,” in Advances in Neural Information Processing Systems,
2014, pp. 1646–1654.

[4] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” Journal of Machine Learning
Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[5] J. B. Diederik P. Kingma, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations, 2014.

[6] D. P. Bertsekas, “Incremental proximal methods for large scale convex
optimization,” Mathematical programming, vol. 129, no. 2, p. 163, 2011.

[7] ——, “Incremental gradient, subgradient, and proximal methods for
convex optimization: A survey,” Optimization for Machine Learning, vol.
2010, no. 1-38, p. 3, 2011.

[8] E. K. Ryu and S. Boyd, “Stochastic proximal iteration: a non-asymptotic
improvement upon stochastic gradient descent,” Preprint, 2014.

[9] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,”
SIAM journal on control and optimization, vol. 14, no. 5, pp. 877–898,
1976.

[10] P. Bianchi, “Ergodic convergence of a stochastic proximal point algo-
rithm,” SIAM Journal on Optimization, vol. 26, no. 4, pp. 2235–2260,
2016.

[11] M. Wang and D. P. Bertsekas, “Incremental constraint projection-proximal
methods for nonsmooth convex optimization,” SIAM J. Optim.(to appear),
2013.

[12] J. C. Duchi and F. Ruan, “Stochastic methods for composite and weakly
convex optimization problems,” SIAM Journal on Optimization, vol. 28,
no. 4, pp. 3229–3259, 2018.

[13] H. Asi and J. C. Duchi, “Stochastic (approximate) proximal point
methods: Convergence, optimality, and adaptivity,” SIAM Journal on
Optimization, vol. 29, no. 3, pp. 2257–2290, 2019.

[14] D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization
of weakly convex functions,” SIAM Journal on Optimization, vol. 29,
no. 1, pp. 207–239, 2019.

[15] H. Asi and J. C. Duchi, “The importance of better models in stochastic
optimization,” Proceedings of the National Academy of Sciences, vol.
116, no. 46, pp. 22 924–22 930, 2019.

[16] S. Chen, Z. Deng, S. Ma, and A. M.-C. So, “Manifold proximal point
algorithms for dual principal component pursuit and orthogonal dictionary
learning,” arXiv preprint arXiv:2005.02356, 2020.

[17] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[18] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra:

Vectors, Matrices, and Least Squares. Cambridge University Press,
2018.

[19] P. P. Van Der Smagt, “Minimisation methods for training feedforward
neural networks,” Neural networks, vol. 7, no. 1, pp. 1–11, 1994.

[20] J. Nocedal and S. Wright, Numerical optimization. Springer Science &
Business Media, 2006.

[21] R. Sun and Z.-Q. Luo, “Guaranteed matrix completion via non-convex
factorization,” IEEE Transactions on Information Theory, vol. 62, no. 11,
pp. 6535–6579, 2016.

[22] R. Ge, J. D. Lee, and T. Ma, “Matrix completion has no spurious local
minimum,” in Advances in Neural Information Processing Systems, 2016,
pp. 2973–2981.

[23] Y. Chi, Y. M. Lu, and Y. Chen, “Nonconvex optimization meets low-
rank matrix factorization: An overview,” IEEE Transactions on Signal
Processing, vol. 67, no. 20, pp. 5239–5269, 2019.

[24] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[25] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor
decompositions for learning latent variable models,” Journal of Machine
Learning Research, vol. 15, pp. 2773–2832, 2014.

[26] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582, 2017.

[27] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank
tensor recovery via convex optimization,” Inverse Problems, vol. 27,
no. 2, p. 025010, 2011.

[28] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE transactions on pattern
analysis and machine intelligence, vol. 35, no. 1, pp. 208–220, 2012.

[29] A. Krishnamurthy and A. Singh, “Low-rank matrix and tensor completion
via adaptive sampling,” in Advances in Neural Information Processing
Systems, 2013, pp. 836–844.

[30] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” Journal of Mathematics and Physics, vol. 6, no. 1-4, pp.
164–189, 1927.

[31] E. J. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational mathematics, vol. 9, no. 6,
p. 717, 2009.

[32] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” AMC Transactions on Interactive Intelligent Systems (TIIS),
vol. 5, no. 4, pp. 1–19, 2015.

1054

