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Abstract—Nonlinear phenomena can be represented as non-
linear autoregressive exogenous (NARX) systems. NARX systems
can be seen as a nonlinear version of linear infinite impulse re-
sponse filter. Data-driven approaches are witnessing considerable
interests in recent times and they are well-flourished for linear
time-invariant systems. However, for nonlinear systems, they are
still limited and attempts have been made to generalize the
results for linear systems to nonlinear systems. In this paper, we
study the problem of data-driven simulation for NARX systems:
compute the output trajectory from a given input trajectory and
initial conditions without explicitly identifying the parametric
model; the model is implicitly identified by observed trajectory.
Next, we develop an algorithm for the implementation of our
approach. Finally, we illustrate the developed algorithm by
numerical experiments.

Index Terms—Data-driven simulation, NARX, System identi-
fication

I. INTRODUCTION

NARX (nonlinear autoregressive exogenous) systems are
popular in modeling and simulation of nonlinear processes
[1]. They can be seen as a nonlinear generalization of ARX
(autoregressive exogenous), a technique for linear black-box
system identification [2]. NARX models cover a large class of
nonlinear dynamic systems, such as Gaussian processes [3],
[4] and neural networks [5], [6], widely used in applications.
The fact that the output depends on its previous values (the
autoregressive property) makes the NARX model a good
predictor of time series [7]–[11].

Here we are interested in data-driven simulation for NARX
systems. This is opposed to the classical model-based simu-
lation problem, where a model is first identified in order to
predict the output. As argued in the literature [12], this inter-
mediate step of identifying a model may return a suboptimal
solution of the desired problem. Hence it would be better to
avoid this intermediate step of identifying a model and work
directly with the available data (which implicitly identify the
model). This leads to the problem of data-driven simulation:
given an observed trajectory wd := col(ud, yd) := [ ud

yd ],
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initial condition wini := col(uini, yini), and input trajectory us;
compute the output trajectory ys.

In recent times, Theorem 1 of [13] or its variants have re-
ceived considerable attention among the researchers in systems
and control due to its applications in data-driven simulation
and control [14]–[17]. This result is popularly known as the
fundamental lemma in system theory [18]. We also adopt this
nomenclature in our present paper. Originally, the fundamental
lemma is for LTI (linear time-invariant) systems. It essentially
provides conditions under which trajectories of an LTI system
can be expressed as a linear combination of columns of the
Hankel matrix, which is built from an observed trajectory.
Thus, it gives a trajectory-based representation of a model, i.e.
the model is described independent of the model parameters.
This fact is the crux while utilizing the fundamental lemma
in studying data-driven control problems. Recently, there has
been a great deal of interest in generalizing the fundamental
lemma; these generalizations are in two directions: 1) it has
been shown in [19] that the fundamental lemma like result
is possible even if we replace a (long) trajectory by multiple
(short) trajectories by introducing the notion of collectively
persistency of excitation; 2) it has been extended to a few
classes of nonlinear systems: Hammerstein and Wiener sys-
tems [20], and second order Volterra systems [21]. Here, we
are also interested in generalizing this in the second direction,
particularly for NARX systems. It is notable that none of the
previous extensions consider nonlinearity in the outputs.

This paper is motivated by a recent work [21], where the
fundamental lemma is generalized to a second order Volterra
system. It is then natural to ask if this result can be further
extended to a more general class of systems. In this paper,
we have extended the result for NARX systems by modifying
the definition of the persistency of excitation, which not only
involves the inputs, but also the observed outputs. Moreover,
we have utilized this result in developing an algorithm for data-
driven simulation. Specifically, our contributions are twofold:
1) we have extended the fundamental lemma for LTI systems
to NARX systems, and 2) we have developed an algorithm for
data-driven simulation for NARX systems.

A. Related Work

Recently, control theory has received considerable attention
among researchers from different domains because of the new
methods developed in view of data-driven analysis and control.
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Perhaps the main ingredient in developing these methods is a
seminal result by Willems et al. [13, Theorem 1] in system
theory, which is also known as the fundamental lemma. The
result has been recently generalized to the situations where
a number of short system trajectories are given instead of a
single long trajectory [19], Hammerstein and Wiener systems
[20], and second order Volterra systems [21]. It seems like the
first contribution towards data-driven simulation and control
for LTI systems using the fundamental lemma is reported in
[14]. Later, an algorithm is developed for closed-loop data-
driven simulation in [22]. Recently, data-driven simulation
problem for LTI systems has been studied as the Hankel
matrix completion problem in [17]. Here, we are interested
in extending the work of [21] for the purpose of data-driven
simulation for NARX systems.

In the last years, data-driven problems are becoming more
popular as they avoid identifying the explicit analytical model
[12]. Looking at the literature in this framework, we can
list as examples the solution of minimum energy control for
discrete-time LTI systems by using experimental data [23], the
notion of data informativity for control problems [24], [25],
data-driven model predictive control [26], data-driven open
and closed loop representations of LTI discrete-time systems
[16], data-driven dissipativity [27], data-driven controllability
and observability [28]–[30]. Further, data-driven approaches to
control have already found applications in real-time control of
electrical circuits [31] and real-time implementation of fault-
tolerant control systems [32].

B. Problem Description

Consider the following NARX system

y(t) =

d1∑
i=1

`1∑
j=0

αiju
i(t− j) +

d2∑
k=1

`2∑
l=1

βkpy
k(t− l) (1)

where all αij , βkl are real parameters, u(t) ∈ R is the input,
and y(t) ∈ R is the output. For convenience, the above system
is rewritten in a more compact form as

y(t) =

d1∑
i=1

Γ>i η
i(t) +

d2∑
k=1

Λ>k ξ
k(t), (2)

where

ηi(t) =
[
ui(t) ui(t− 1) . . . ui(t− `1)

]>
ξk(t) =

[
yk(t− 1) yk(t− 2) . . . yk(t− `2)

]>
Γi =

[
αi0 αi1 . . . αi`1

]>
Λk =

[
βk1 βk2 . . . βk`2

]>
. (3)

Note that when we leave out the superscript in ηi or ξk, it
should be understood as 1. Systems of the form (1) are known
as additive NARX in the literature and have been efficiently
applied to several industrial processes [1]. In order to keep
our exposition simple, we do not involve the cross terms in
(1). Nevertheless, the results of the paper can be extended to
a system with cross terms analogously. See Appendix A for
outline of the approach. To this end, define ` := max(`1, `2).

Recall the problem of simulation: computing the outputs
from inputs and initial conditions. A naive approach to deal
with this problem is to use the linear regression and compute
all the parameters αij , βkl and then use system (1) to recur-
sively compute the future outputs from inputs, and previous
(delayed) inputs and outputs (initial conditions). This is what
we call model-based simulation. However, as discussed earlier,
here we are interested in an alternative approach, viz. data-
driven simulation, which is typically defined as follows: given
an observed input/output trajectory or data wd = col(ud, yd),
an input trajectory us, and initial conditions wini; find the out-
put trajectory ys. Note that the system is identified implicitly
by the observed input/output trajectory wd = col(ud, yd). Note
moreover that in data-driven simulation, the output trajectory
ys is computed in one-shot contrary to the model-based
simulation, where it is computed recursively. In order to tackle
this problem, we first extend the fundamental lemma for LTI
systems to NARX systems (Theorem 1) and then develop an
algorithm based on this result (Algorithm 1).

C. Outline of the Paper

The next section collects our notation and develops pre-
liminary concepts needed for the subsequent development of
the paper. The extension of the fundamental lemma to NARX
system is provided in Section III and an algorithm for data-
driven simulation based on this is then developed in Section
IV. Numerical experiments demonstrating the effectiveness of
the developed algorithm are performed in Section V. Finally,
conclusions of the paper are offered in the last section.

II. NOTATION AND PRELIMINARIES

For any matrix A, A> denotes its transpose. For any two
matrices A and B, their Kronecker product is denoted by
A ⊗ B. If matrices A1, A2, . . . , Ar have the same number
of columns, we define

col(A1, A2, . . . , Ar) :=
[
A>1 A>2 . . . A>r

]>
.

By wd (subscript ‘d’ is used to denote the observed data
throughout the paper) we denote an observed vector time series
of length T defined as

wd := col
(
wd(1), wd(2), . . . , wd(T )

)
∈ RqT ,

where wd(i) ∈ Rq for i = 1, 2, . . . , T .
Also, for any general trajectory f : [1, T ] → Rq , we use

f |T to denote

col
(
f(1), f(2), . . . , f(T )

)
.

Definition 1. A time series wd is persistently exciting of order
L ∈ N if it is the maximum natural number for which the
associated Hankel matrix

HL(wd) =


wd(1) wd(2) · · · wd(T − L+ 1)
wd(2) wd(3) · · · wd(T − L+ 2)

...
...

. . .
...

wd(L) wd(L+ 1) · · · wd(T )


is of full row rank, i.e. qL.
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We now generalize this definition to the case of the NARX
system (1).

Definition 2. A sequence {wd, w2
d, . . . , w

d
d}, where each ele-

ment is a time series, of degree d is persistently exciting of
order L ∈ N if it is the maximum natural number for which
the mosaic-Hankel matrix (each block is the Hankel matrix)

Hd
L(wd) := col

(
HL(wd),HL(w2

d), . . . ,HL(wd
d)
)

is of full row rank, i.e. dqL.

III. GENERALIZATION OF THE FUNDAMENTAL LEMMA TO
NARX SYSTEMS

Following [21], we state and prove the following result for
NARX systems of the form (1).

Theorem 1. Let wd = col(ud, yd) be an observed trajectory of
system (1). Let {ηd, η2d, . . . , η

d1
d , ξd, ξ

2
d, . . . , ξ

d2
d } be persistently

exciting of order L. Then, any w|L = col(u, y)|L is a
trajectory of (1) if and only if there exists g ∈ RT−L+1 such
that 

η|L
η2|L

...
ηd1 |L
ξ|L
ξ2|L

...
ξd2 |L
y|L


=



HL(ηd)
HL(η2d)

...
HL(ηd1d )
HL(ξd)
HL(ξ2d)

...
HL(ξd2d )
HL(yd)


g. (4)

Proof. From (2) and (3), we have



η|L
η2|L

...
ηd1 |L
ξ|L
ξ2|L

...
ξd2 |L
y|L


=

diag(I, I, . . . , I) 0
0 diag(I, I, . . . , I)
P Q





η|L
η2|L

...
ηd1 |L
ξ|L
ξ2|L

...
ξd2 |L


(5)

with

P =
[
I ⊗ Γ>1 I ⊗ Γ>2 . . . I ⊗ Γ>d1

]
and

Q =
[
I ⊗ Λ>1 I ⊗ Λ>2 . . . I ⊗ Λ>d2

]
.

Because {ηd, η2d, . . . , η
d1
d , ξd, ξ

2
d, . . . , ξ

d2
d } is persistently excit-

ing of order L, matrix col
(
Hd1
L (ηd),Hd2

L (ξd)
)

is of full row
rank. That is,

rank



HL(ηd)
HL(η2d)

...
HL(ηd1d )
HL(ξd)
HL(ξ2d)

...
HL(ξd2d )


= rank



HL(ηd) η|L
HL(η2d) η2|L

...
...

HL(ηd1d ) ηd1 |L
HL(ξd) ξ|L
HL(ξ2d) ξ2|L

...
...

HL(ξd2d ) ξd2 |L


= Ld1(`1 + 1) + Ld2`2.

This is equivalent to saying that there exists g ∈ RT−L+1 such
that



η|L
η2|L

...
ηd1 |L
ξ|L
ξ2|L

...
ξd2 |L


=



HL(ηd)
HL(η2d)

...
HL(ηd1d )
HL(ξd)
HL(ξ2d)

...
HL(ξd2d )


g. (6)

Substituting (6) in (5), we obtain (4). This completes the proof
of the theorem.

IV. DATA-DRIVEN SIMULATION

Based on Theorem 1 and the approach discussed in [14]
for LTI systems, we develop the following algorithm for data-
driven simulation.

Algorithm 1. Data-driven simulation for NARX system (1)

Input: Observed trajectory wd = col(ud, yd), initial con-
dition wini = col(uini, yini), input trajectory u|τ =
col
(
u(1), . . . , u(τ)

)
, and integers d1, d2, `1, `2.

1: Define: U i := Htini+τ (ηid) for 1 ≤ i ≤ d1, V k :=
Htini+τ (ξkd ) for 1 ≤ k ≤ d2, and Y := Htini+τ (yd).

2: Partition: U i :=

[
U ip
U if

]
, V k :=

[
V kp
V kf

]
, and Y :=

[
Yp
Yf

]
.

3: Construct: ηiini and ξkini from wini, and ηi|τ from u|τ
compatible with Step 2.
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4: Compute g and y|τ from

U1
p
...
Ud1
p

V 1
p
...
V d2
p

Yp
U1
f
...
Ud1
f

V 1
f
...
V d2
f

Yf



g =





ηini (`1 + 1)tini

...
ηd1ini (`1 + 1)tini

ξini `2tini

...
ξd2ini `2tini

yini tini

η|τ (`1 + 1)τ

...
ηd1 |τ (`1 + 1)τ

ξ|τ `2τ

...
ξd2 |τ `2τ

y|τ τ

. (7)

Output: Output trajectory y|τ = col
(
y(1), . . . , y(τ)

)
.

Proposition 1. Under the assumptions of Theorem 1, Algo-
rithm 1 computes the correct output trajectory ys for given
input trajectory us and initial condition wini.

Proof. Let L = tini + τ in Eq. (4). Assume that an initial
trajectory wini is given and we want to compute a τ−samples
long output trajectory ys for a given input trajectory us. From
Theorem 1, the concatenation wini ∧ col(us, ys) =: w̄ is a
trajectory of system (1) if and only if there exists a g such
that Eq. (4) holds. In view of Steps 1–3 of Algorithm 1, Eq.
(7) is equivalent to Eq. (4). This completes the proof.

Remark 1 (On initial conditions). The initial condition wini =
col(uini, yini) is specified by (`+ 1)−long sequences of inputs
and outputs. Thereby, we can determine ηiini and ξkini for each
i and for each k. Note that in the instances where wini is not
prescribed, it is by default specified by zero initial condition.

Note that Step 4 of Algorithm 1 is practically intractable.
Indeed, due to the presence of monomials in ξ|τ , we could
not be able to implement the algorithm and is a topic of
future research. Nevertheless, we are able to implement the
algorithm for an important particular case in which monomials
in ξ|τ and thus ξini are not present, which is to say that current
output does not depend on previous outputs. Remark that this
particular case is a subject of [21]; however, the problem of
data-driven simulation has not been studied therein. In this
case (after removing the block equations corresponding to
monomials in ξ|τ and ξini), the remaining block equations,
except the last block equation Yfg = y|τ , put restrictions on
g, i.e. are used to determine g, and the last block equation
is used to compute the output trajectory y|τ . Typically, g
is nonunique. However, taking a particular solution, say gp
(obtained by Matlab’s backslash operator), and substituting
it in the equation y|τ = Yfgp, we obtain the unique output
trajectory. (This can be seen as an additional requirement
to obtain unique solution for an underdetermined system.)

Conditions under which g is unique are not known and it
would be interesting to uncover the natural assumptions, which
guarantees the existence of unique g. For LTI systems, if the
length of the initial trajectory wini is greater than or equal to
the lag of the system, output is uniquely determined from the
input and initial condition [14, Lemma 1].

V. NUMERICAL EXPERIMENTS

Example 1. Consider the system

y(t) = u(t) + 2u(t− 1) + 3u2(t) + 4u2(t− 1). (8)

We generate two sets of 500 samples of outputs by applying a
uniform random input time series with zero initial conditions.
We assume one set of input/output time series as the observed
data (ud, yd) = (u|500, y|500). We then compute first 50
samples of outputs of the other dataset by using Algorithm
1 with the given input and zero initial condition. The results
are shown in Fig. 1. Because there is no noise in the data, we
obtain perfect match between computed and true outputs.

0 10 20 30 40 50

Time

0

1

2

3

4

5

6

7

8

9

10

O
u
tp

u
t

True output

Simulated output

Fig. 1. True outputs and the ones computed by Algorithm 1. Because the
data are exact (noise-free), the true and computed outputs coincide.

We now explore the noisy case. We adapt the previous setup
with the assumption that the outputs are corrupted by normally
distributed additive noise. Clearly, as we increase the noise
level, we can expect increase in the relative error, which is
defined as ‖ȳ− ỹ‖/‖ȳ‖, where ȳ and ỹ are the true and com-
puted outputs, respectively. To show the effectiveness of our
approach, we add increasing level of noise (by increasing the
standard deviation) to the true outputs and then by using our
algorithm we compute the outputs and subsequently compute
the relative errors. The results are displayed in Table I.

VI. CONCLUSIONS

We have generalized the fundamental lemma for LTI sys-
tems to NARX systems. It has been seen that the result
requires a persistency of excitation condition that involves
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TABLE I
RELATIVE ERRORS CORRESPONDING TO VARIOUS NOISE LEVELS

Standard deviation 0.01 0.05 0.1 0.15 0.2
Relative error 0.0059 0.0318 0.0645 0.0813 0.1087

not only the inputs, but also the outputs. This result is then
used to develop an algorithm that implements the data-driven
simulation. Numerical experiments have been performed to
illustrate the effectiveness of the developed algorithm. It would
be interesting to see how the relative error in the noisy case
is affected by the length of the trajectory or the degree of
the term of the polynomial. Further, extending these results
to data-driven control problems such as output tracking and
stabilization are the future research topics.
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cation of dissipativity properties from input–output data,” IEEE Control
Syst. Lett., vol. 3, no. 3, pp. 709–714, 2019.

[28] Z. Wang and D. Liu, “Data-based controllability and observability
analysis of linear discrete-time systems,” IEEE Trans. Neural Netw.,
vol. 22, no. 12, pp. 2388–2392, 2011.

[29] D. Liu, P. Yan, and Q. Wei, “Data-based analysis of discrete-time linear
systems in noisy environment: Controllability and observability,” Inf.
Sci., vol. 288, pp. 314–329, 2014.

[30] V. K. Mishra, I. Markovsky, and B. Grossmann, “Data-driven tests for
controllability,” IEEE Control Syst. Lett., vol. 5, no. 2, pp. 517–522,
2020.
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APPENDIX

Consider the following NARX system

y(t) =

d1∑
i=1

`1∑
j=0

αiju
i(t− j) +

d2∑
k=1

`2∑
l=1

βkpy
k(t− l)

+

d3∑
m=1

`1∑
j=1

`2∑
l=1

δmjpu
m(t− j)ym(t− l) (9)

where αij , αkl, and δmjl are parameters. The above system
can be rewritten as follows

y(t) =

d1∑
i=1

Γ>i η
i(t) +

d2∑
k=1

Λ>k ξ
k(t) +

d3∑
m=1

∆>mζ
m(t), (10)

where in addition to (3), we define

ζm(t) = Zm(t)⊗ ξm(t)

Zm(t) =
[
um(t− 1) um(t− 2) . . . um(t− `1)

]>
∆m =

[
δm11 . . . δm1`2 . . . δm`11 . . . δm`1`2

]>
.

Now, Theorem 1 and Algorithm 1 may be analogously devel-
oped for system (9).
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