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Abstract—Block-term tensor decomposition (BTD)-based hy-
perspectral unmixing (HU) is well-motivated because of its identi-
fiability of the endmembers and abundance maps under relatively
mild conditions. However, algorithm design of BTD-based HU
faces challenges in enforcing hyperspectral image-related struc-
tural constraints, e.g., the probability simplex constraints on the
abundance vectors—while incorporating structural information
is critical for combating noise and enhancing interpretability.
Existing work uses a three-block alternating least square (ALS)
framework, and employs the multiplicative update (MU) method
to handle constraints, but this ALS-MU approach has high per-
iteration complexity and often converges slowly. This work puts
forth an alternating gradient projection (GP) algorithm for the
problem of interest. Our method leverages a two-block parame-
terization of the BTD model to avoid encountering heavy updates,
thereby exhibiting high efficiency. Another core contribution lies
in a fast solver for computing a key step in the GP algorithm,
namely, the orthogonal projection onto the set of matrices with
low-rank and probability simplex structures. Simulations show
that the GP framework attains order-of-magnitude speedup and
accuracy improvement relative to the state-of-the-art.

Index Terms—Hyperspectral unmixing, constrained block-
term tensor decomposition, alternating gradient projection.

I. INTRODUCTION

Hyperspectral images (HSIs) are often acquired with a
limited spatial resolution, and thus a pixel may be a mixture of
several materials. Hyperspectral unmixing (HU) techniques es-
timate the spectral signatures of the constituent materials (end-
members) and their corresponding proportions (abundances)
from the mixtures [1]. The arguably most prominent model
for HU is the so-called linear mixture model (LMM). Under
the LMM, a hyperspectral pixel are expressed as a convex
combination of the endmembers. Estimating the endmembers
and the abundances of the materials is then recast as a blind
linear unmixing problem, which is also often associated with
(nonnegative) matrix factorization (NMF); see [1], [2].
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Under the NMF model, the identifiability for the endmem-
bers and abundances holds under relatively restrictive or hard
to check conditions [2]. A recent work [3] connected the
LMM-based HU problem to the tensor decomposition model
with multi-linear rank-(Lr, Lr, 1) block terms (i.e., the LL1
model) [4]. Leveraging the uniqueness of the LL1 model,
identifiability of the endmembers and abundance maps can be
established under conditions that are fairly different from those
used in the NMF model. Hence, the LL1 model is considered
a valuable alternative to existing HU frameworks.

However, computing the LL1 decomposition under HU-
related structural constraints gives rise to challenging opti-
mization problems. The work in [3] adopts the classic al-
ternating least squares (ALS) framework for unconstrained
LL1 decomposition [4]. Nonnegativity and probability simplex
constraints are added to reflect the physical meaning of the
endmembers and abundance maps. Every subproblem in the
ALS framework becomes a (large-scale) nonnegative least
squares problem. The work in [3] uses the multiplicative
updates (MU) for handling the subproblems, which requires
a large amount of operations per iteration and often leads to
slow convergence of the overall algorithm.

In this work, our interest lies in efficient constrained LL1
decomposition for HU. Our approach starts with an equivalent
two-block re-parametrization of the matricized LL1 model.
Per the block factors’ physical meaning in the context of
HU, we also impose nonnegativity and simplex constraints
on the pertinent factors. The re-parametrization allows us
to develop an alternating gradient projection (GP) algorithm
that circumvents the large-scale subproblems that arise in
the ALS framework [3]. The key challenge for realizing the
GP framework is that one block’s constraint is a nonconvex
low-rank and simplex-structured matrix set, and no tractable
projector exists. We propose a heuristic solver for this pro-
jection problem. The solver consists of simple operations,
i.e., truncated SVD and water-filling, and thus is efficient. To
support our design, we also show that the projection solver
exhibits local linear convergence. Simulations show that our
GP algorithm attains substantial efficiency improvement and
produces more accurate HU results relative to state-of-the-art.
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II. BACKGROUND: LMM-BASED HU

Under the LMM, in the noise-free case, a spectral pixel yl ∈
RK contained in the HSI can be expressed as y` = Cs`, where
C = [c1, . . . , cR] ∈ RK×R denotes the spectral signatures of
R endmembers contained in the pixel, and s` ∈ RR is the
abundance vector such that 1>s` = 1, s` ≥ 0. Collecting all
pixels together, we have

Y = CS, (1)

where S = [s1, . . . , sN ], and Y = [y1, . . . ,yN ] [1]. The
LMM can also be expressed as

Y =

R∑
r=1

Sr ◦C(:, r),

R∑
r=1

Sr = 11>, Sr ≥ 0, (2)

where ◦ is the outer product, C(:, r) = cr and Y ∈ RI×J×K .
Note that Y is often obtained by re-arranging pixels in Y
via y` = Y (i, j, :) with ` = i + (j − 1)I . The matrix
Sr = mat(S(r, :)) is interpreted as the abundance map of
endmember r, where the “matricization” operator mat(·) :
RIJ → RI×J is the inverse operation of “vectorization”; see
Fig. 1. LMM-based HU aims at finding S and C.

A. NMF-based HU and Identifiability

Since C and S are both nonnegative per their physical
meaning, a plethora of NMF based methods were proposed for
LMM based HU; see [1], [2]. As a blind estimation problem,
the soundness of HU methods is built upon the identifiability
of C and S from Y . The NMF model is in general not
identifiable [2], since one can often find invertible Q such
that C̃ = CQ ≥ 0 and S̃ = Q−1S ≥ 0—and Y = C̃S̃
still holds. The identifiability consideration often leads to
more complex NMF criteria, e.g., the volume minimization
based NMF; see, e.g., [5]. In addition, even with complex
regularization terms, NMF methods admit identifiability only
when some conditions are satisfied by C and/or S—e.g., the
separability and sufficiently scattered conditions [2]. These
conditions are related to how “spread” is the conic hull of
C in the nonnegative orthant, which are nontrivial to satisfy
or even to check.

B. LL1-Based HU and Challenges

The work in [3] connected the LL1 tensor model with the
HU problem. To be specific, if the abundance maps are low-
rank matrices, i.e., rank(Sr) = Lr < min{I, J}, one can
re-write the first term in (2) as follows:

Y =

R∑
r=1

(
ArB

>
r

)
◦C(:, r), (3)

where Ar ∈ RI×Lr , Br ∈ RJ×Lr , and Sr = ArB
>
r —which

is exactly the block-term decomposition with multilinear rank-
(L,L, 1) terms [4]. The LL1 model has the following property:

Theorem 1 Assume that Ar, Br, and C in (3) are drawn
from any absolutely continuous distributions. Then, the LL1

Fig. 1. Illustration of the LMM (top) and the LL1 tensor model (bottom).

TABLE I
THE ENERGY PROPORTION CONTAINED IN THE FIRST 50 PRINCIPAL

COMPONENTS OF THE ABUNDANCE MAPS Sr (SIZE: 500× 307) OF THE 5
PROMINENT MATERIALS IN THE TERRAIN DATA (SEE FIG. 1).

Ab. map (Sr) Soil1 Soil2 Tree Shadow Grass
Ratio of energy 93.56% 93.41% 89.48% 91.92% 94.60%

decomposition of Y is essentially unique almost surely, if
Lr = L, IJ ≥ L2R and

min

(⌊
I

L

⌋
, R

)
+min

(⌊
J

L

⌋
, R

)
+min(K,R) ≥ 2R+ 2.

In the above, “essential uniqueness” means that if Y =∑R
r=1(A

?
r(B

?
r )
>) ◦ C?(:, r), then, it must hold that S? =

SΠΛ, C? = CΠΛ−1, where Π and Λ denote a permu-
tation matrix and a nonsingular scaling matrix, respectively,
S? = [vec(S?1), . . . , vec(S?R)]

>, S?r = A?
r (B

?
r )
> and S =

[vec(S1), . . . , vec(SR)]>, Sr = ArB
>
r .

Simply speaking, Theorem 1 means that if the abundance
maps (Sr’s) have low rank and the endmembers are linearly
independent, then their identifiability is guaranteed under the
LL1 framework. In the context of HU, the abundance maps
are often (approximately) low-rank matrices. Table I shows
that about 90% energy is captured in the first 50 principal
components of the Terrain data’s abundance maps (with a size
of 500 × 307) [6]. Some more numerical evidence can be
found in [7]. The identifiability conditions in Theorem 1 are
different from those geometric conditions used in NMF [2],
and thus LL1-based HU is a valuable complement to existing
NMF approaches. Notably, the conditions in Theorem 1 is
checkable, which is also a sharp contrast to the NMF cases.

To utilize Theorem 1 together with the HU model in (2),
the work in [3] proposed the following criterion:

min
{Ar,Br},C

∥∥∥∥∥Y −
R∑
r=1

(
ArB

>
r

)
◦C(:, r)

∥∥∥∥∥
2

F

+ λg({Ar,Br})

s.t. Ar ≥ 0, Br ≥ 0, C ≥ 0, (4)

where g({Ar,Br}) = ‖
∑R
r=1 ArB

>
r − 11>‖2F . Note that the

nonnegativity constraints are added according to the physi-
cal meaning of the endmembers and the abundance maps.
The second term in the criterion is an approximation to
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∑R
r=1 Sr = 11> in (2). In real-data analysis, adding these

physical meaning-motivated constraints is critical to fend
against noise and modeling error, and often helps enhance
interpretability of the HU results.

In [3], the ALS framework is used for handling (4). The
three blocks A = [A1, . . . ,AR], B = [B1, . . . ,BR] and
C are updated using matrix unfoldings of Y using MU for
accommodating the nonegativity constraints. Several notable
challenges are in order: First, the ALS-MU algorithm in [3]
takes O(IJKLR+IKL2R2+JKL2R2) flops per iteration—
which is fairly costly in the context of HU. The large number
of flops is induced by the parametrization using A ∈ RI×LR,
B ∈ RJ×LR and C ∈ RK×R and the ALS framework. This
parametrization essentially treats the LL1 decomposition prob-
lem as a canonical polyadic decomposition (CPD) problem
with a tensor rank of LR, which is known to be hard when
LR is large. Second, the employment of MU perhaps worsens
the efficiency, since MU is known to be less effective for
nonnegative factor analysis and often requires a large number
of iterations to reach sensible results [8]. Third, the penalty
based treatment for the sum-to-one condition in (4) does not
necessarily produce a solution satisfying the LMM model in
(2), and tuning λ is often nontrivial.

III. CONSTRAINED LL1 FOR HU

In this work, we employ the parametrization in (2) with
rank(Sr) ≤ Lr for LL1-based HU. Note that this model was
shown to be equivalent to the three-block representation in
(3) [9]. By the link between (1) and (2), we propose the
following two-block parametrization-based constrained LL1
decomposition criterion:

min
S,C

1

2
‖Y −CS‖2F (5a)

s.t. rank(mat(S(r, :))) ≤ Lr, r = 1, . . . , R, (5b)

S ≥ 0, 1>S = 1>, C ≥ 0. (5c)

Our motivation for using this reformulation is as follows:
As shown in [9], the low-rank Sr parameterization of the LL1
model can effectively avoid large-size subproblems in the ALS
framework (in particular, the A and B blocks with sizes of
I × LR and J × LR, respectively, are circumvented), and
thus could potentially substantially reduces the per-iteration
complexity. The work in [9] did not consider nonnegativity
and simplex constraints on the latent factors—with which the
LL1 decomposition problem in (5) is a much more challenging
optimization problem.

A. Proposed Approach: Alternating Gradient Projection

We propose to employ an alternating GP algorithm. To begin
with, in iteration t, we update C using gradient projection:

C(t+1) ← max
{
C(t) − α(t)G

(t)
C , 0

}
, (6)

where max {·, 0} is the orthogonal projector onto the non-
negativity orthant and α(t) is a pre-defined step size used
at iteration t, and the gradient can be computed using

G
(t)
C = C(t)S(t)(S(t))> − Y (S(t))>. In this work, we set

α(t) ≤ 1
σ2
max(S

(t))
that ensures the cost to be decreased in

each iteration.
For the S-subproblem, we hope to use the same GP-based

rule, i.e.,

S(t+1) ← ProjS

(
S(t) − β(t)G

(t)
S

)
, (7)

where β(t) ≤ 1
σ2
max(C

(t+1))
, G(t)

S = (C(t+1))>C(t+1)S(t) −
(C(t+1))>Y , and the set S ⊆ RR×IJ is defined as

S = {S|S ≥ 0,1>S = 1>, rank(mat(S(r, :))) ≤ Lr}. (8)

The above is conceptually simple. However, the critical chal-
lenge is that there is no known tractable algorithm that can
solve the projection problem in (7). To address this issue, in
the next subsection, we propose a simple heuristic for handling
this projection problem.

B. Heuristic Simplex-Constrained Low-Rank Projector

To see our approach, let us define S1 = {S ∈
RR×IJ | 1>S = 1>, S ≥ 0} and S2 = {S ∈
RR×IJ | rank(mat(S(r, :))) ≤ Lr, ∀r}. The goal then boils
down to computing the projection on to S = S1 ∩ S2. We
propose the following alternating projection (AP) algorithm
for computing the projection:

F (k+1) ← ProjS2

(
W (k)

)
, (9a)

W (k+1) ← ProjS1(F
(k+1)), (9b)

where W (0) = S(t) − β(t)G
(t)
S and we have used k as the

iteration index for the AP algorithm. Note that the above
projections can be readily computed: Eq. (9a) can be solved
optimally by truncated SVD, following the Eckart–Young–
Mirsky theorem. Eq. (9b) can be solved efficiently by water-
filling type algorithms [5].

The AP algorithm has a long history in convex feasi-
bility problems. However, since the low-rank constraint is
nonconvex, it is unclear if the AP algorithm can always
converges to a “good” solution. Nonetheless, in our extensive
experiments, we observe that AP algorithm converges quickly
and works under various scenarios. In this work, we provide
local convergence analysis to support our observation:

Proposition 1 (Local Linear Convergence) Denote W (k) =
S̃+E(k) where S̃ ∈ S1∩S2 is the sought projection of W (0).
Also assume that for any iterate W (k) ∈ S1/S2, there is a
uniform upper bound ρ < 1 such that:(∑R

r=1 ‖E
(k)
r −U r

2 (U
r
2 )
>E

(k)
r V r

2 (V
r
2 )
>‖2∑R

r=1 ‖E
(k)
r ‖2

)
≤ ρ, (10)

where E
(k)
r = mat(E(k)(r, :)), R(U r

2 ) = R(S̃r)⊥ and
R(V r

2 ) = R(S̃>r)⊥ and U r
2 and V r

2 are semi-orthogonal
bases. Then, if ‖E(0)‖ is small enough, the algorithm con-
verges linearly to S̃; i.e.,

‖E(k+1)‖ ≤ √ρ‖E(k)‖. (11)
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The proposition asserts that the algorithm converges quickly to
a feasible solution, if initialized properly. The condition (10)
is reasonable. When W /∈ S2, it means that some mat(W (r, :
))’s are not low-rank, and thus there is non-negligible energy
in the “noise subspaces” spanned by U r

2 and V r
2 .

Proof: A sketch of the proof is as follows. By [10,
Theorem 1], we have F (k+1) − S̃ = M (k) + Q(E(k)),
where M (k)(r, :) = vec(E

(k)
r −U r

2 (U
r
2 )
>E

(k)
r V r

2 (V
r
2 )
>)>, if

‖E(k)‖ is smaller than a certain threshold, where ‖Q(Z)‖ =
O(‖Z‖2). Then, by the non-expansion property of convex sets:

‖E(k+1)‖ ≤ ‖M (k)‖+O(‖E(k)‖2)
≤ ρ1/2‖E(k)‖+O(‖E(k)‖2),

where we have used (10). Hence, by [11, Lemma 10], we
reach the conclusion in (11).

Our overall algorithm consists of (6) and (7), where the
S projection step in (7) leverages the subproblem solver
in (9a)-(9b). This algorithm is referred to as the gradient
projection alternating projection algorithm (GradPAPA). Note
that as an alternating gradient projection algorithm, the stan-
dard Nesterov’s extrapolation technique is also adopted in our
implementation; see details in [12].

C. Complexity

Computing the gradients for C and S both costs O(IJKR)
flops. The step sizes of α(t) and β(t) take O(R3) flops,
but R is normally small. In the AP solver, the SVD in
(9a) takes O(IJLR), and (9b) takes O(IJR log(R)) flops
by using water-filling type algorithms. In summary, the per-
iteration complexity of the proposed algorithm is dominated
by O(IJKR + mIJR(log(R) + L) + R3), where m is
the number of AP iterations—which is normally only 3 to
6 (see Table III). Recall the ALS-MU algorithm [3] takes
O(IJKLR+IKL2R2+JKL2R2) flops per iteration, which
is much higher when LR ≈ I ≈ J (which does often happen
in HU). To summarize, our two-block parametrization helps
effectively avoid operations that need O(IJKLR) flops—
which may easily dominate the computation time.

IV. EXPERIMENTS

We compare our algorithm with the ALS-MU algorithms
MVNTF [3] and MVNTFTV [13], where the latter has an
additional spatial total variation regularization for performance
enhancement. We terminate the algorithms when the relative
error of the cost value is smaller than 10−5. Besides, the AP
is stopped when the relative change of the iterates is smaller
than 10−3. The mean squared error (MSE) of C and S is
used as the performance metric; see definition in [5].

A. Synthetic Data

In this synthetic experiment, we generate C and S using
the following procedure: 1) we draw the entries of C and
S from the unit-variance zero-mean Gaussian distribution; 2)
we employ the AP (9) on the Gaussian S to produce S that
satisfies our problem structure; similarly, we use thresholding
to obtain the nonnegative C. We add i.i.d. zero-mean Gaussian
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Fig. 2. The average MSEs with Gaussian and SPA initializations.

TABLE II
FEASIBILITY RATE OF RECOVERED S .

Initialization Gaussian Init. SPA Init.
Constraints Methods R = 5 R = 10 R = 5 R = 10

S1 (Simplex) MVNTF (q = 10−2) 8.72% 10.50% 11.18% 12.93%
MVNTF (q = 10−6) 0.0005% 0.0015% 0.0005% 0.001%

GradPAPA (q = 10−6) 100% 100% 100% 100%

S2 (Low-Rank) MVNTF 100% 100% 100% 100%
GradPAPA 99.88% 99.90% 99.88% 99.90%

TABLE III
THE AVERAGE NUMBER OF AP ITERATIONS OF DIFFERENT R AND

INITIALIZATION METHODS.

Initialization Gaussian Init. SPA Init.
R = 5 R = 10 R = 5 R = 10

Ave. AP iterations 5 6 3 4

noise to the synthetic tensors and make the signal-to-noise
ratio (SNR) 25 dB. We set I = J = K = 100, L = 30,
R = 5 or 10. We also test two initialization strategies, i.e., i.i.d.
Gaussian initialization and successive projection algorithm
(SPA)-based initialization; see [2] and references therein.

Fig. 2 shows the averaged MSEs of C from 20 independent
trials. It is observed that for different cases, the proposed
GradPAPA algorithm largely outperforms ALS-based MVNTF
in both accuracy and speed. The SPA initialization further
improves the speed of GradPAPA by about 75%, which
presents a promising combination of the simple greedy NMF
algorithm and an LL1 based algorithm. Although MVNTF
works to a certain extent, its MSE is more than three orders of
magnitude higher compared to that of GradPAPA in all cases.

Table II shows the percentages of trials where the solutions
obtained by the algorithms satisfy the constraints in the
context HU. These constraints are important for interpreting
the results. The low-rank constraint satisfaction is measured
by averaging (

∑L
i=1 σi/

∑min{I,J}
i=1 σi) × 100%, where σi

is the ith singular value of the estimated Sr over all r.
The S1 feasibility is measured by counting the percentage
of the nonnegative columns of the estimated S satisfying
|1>s` − 1| ≤ q, where q = 10−2 or 10−6. One can see that
MVNTF struggles to satisfy the probability simplex constraint,
perhaps because it uses a “soft” penalty for this requirement
[cf. Eq. (4)]. Nonetheless, GradPAPA almost achieves 100%
feasibility. More importantly, such feasibility is enforced with
relatively small cost: Table III shows that only about 5 AP
iterations are needed for the S projection problem.

B. Semi-Real Data

In this experiment, we employ the semi-real Terrain data
whose “space×space×spectrum” dimensions are 500× 307×
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TABLE IV
THE AVERAGE MSES OF C AND S , AND RUNNING TIME (IN MINUTES) OF

TERRAIN DATA BY DIFFERENT METHODS.

Methods MSE of C MSE of S Time (min.)
SPA 0.0320 ± 0.0007 0.0736 ± 0.0017 —

MVNTF 0.0554 ± 0.0019 0.1623 ± 0.0082 64.8 ± 0.9
MVNTFTV 0.0557 ± 0.0016 0.1616 ± 0.0088 75.1 ± 1.4
GradPAPA 0.0064 ± 0.0002 0.0039 ± 0.0002 4.6 ± 0.1
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Fig. 3. The estimated abundance maps by different methods. From top to
bottom: Soil1, Soil2, Tree, Shadow, and Grass.

166. The data contains five endmembers, namely, Soil1,
Soil2, Tree, Shadow, and Grass; see details in [6].
We set L = 150 and employ the SPA initialization. We
also consider i.i.d zero-mean Gaussian noise with SNR=45dB.
Since MVNTF and MVNTFTV often run with extra lengthy
time in such large-scale problems, we also set the maximum
number of the iteration as 1,000 for all algorithms.

Table IV shows the MSE performance of the algorithms.
Note that since the dataset is semi-real, ground-truth C and
S are known and can be used for evaluation. One can see
GradPAPA improves upon SPA by one order of magnitude in

terms of MSE, while MVNTF and MVNTFTV could not offer
such improvements. In terms of runtime, GradPAPA uses less
than 5 minutes for this task, while the baselines both use more
than 1 hour. The abundance maps produced by GradPAPA are
also visually much closer to the ground-truth maps; see Fig. 3.

V. CONCLUSION

We proposed a constrained LL1 decomposition algorithm
tailored for HU. Unlike existing algorithms that use three
block parameterization of the LL1 tensor and ALS-MU type
updates, our method employs a two-block parameterization
and a GP algorithmic framework. As a consequence, the
proposed algorithm effectively avoids heavy computations in
its iterations. To realize the GP framework, we proposed
an AP-based solver for a nonconvex orthogonal projection
problem that is essential for enforcing HU-related low-rank
and simplex constraints. Equipped with the AP algorithm, our
GP framework exhibits largely improved HU performance (in
terms of both accuracy and speed) on synthetic and semi-real
datasets, compared to existing LL1 based HU algorithms.
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