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Abstract—Nonnegative matrix factorization with the
minimum-volume criterion (min-vol NMF) guarantees that,
under some mild and realistic conditions, the factorization has
an essentially unique solution. This result has been successfully
leveraged in many applications, including topic modeling,
hyperspectral image unmixing, and audio source separation. In
this paper, we propose a fast algorithm to solve min-vol NMF
which is based on a recently introduced block majorization-
minimization framework with extrapolation steps. We illustrate
the effectiveness of our new algorithm compared to the state of
the art on several real hyperspectral images and document data
sets.

Index Terms—nonnegative matrix factorization, minimum vol-
ume, fast gradient method, majorization-minimization, hyper-
spectral imaging

I. INTRODUCTION

Nonnegative Matrix Factorization (NMF) has been an active
field of research since the seminal paper by Lee and Seung [1].
The success of NMF comes from many specific applications
since many types of data are nonnegative; for example ampli-
tude spectrograms in audio source separation, images, evalua-
tions in recommendation systems, and documents represented
by vectors of word counts; see [2] and the references therein.
Compared to other unconstrained factorization models such
as PCA/SVD, NMF requires the factors to be nonnegative.
This constraint naturally leads to factors that are more easily
interpretable [1]. Nonetheless, there are two drawbacks with
NMF: computability and identifiability.
Computability. As opposed to PCA/SVD, solving NMF is
NP-hard in general [3]. Hence most NMF algorithms rely
on standard non-linear optimization schemes without global
optimality guarantee.
Identifiability. NMF solutions are typically not unique, that is,
they are not unique even after removing the trivial scaling and
permutation ambiguities of the rank-one factors; see [4] and
the references therein. For NMF to have a unique solution, also
known as identifiability, one needs to add additional structure
to the sought solution. One way to ensure identifiability is the
min-vol criterion, which minimizes the volume of one of the
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factors. If the sufficiently scattered condition (SSC) is satisfied,
then identifiability holds for min-vol NMF [5]–[7].

Identifiability for min-vol NMF is a strong result that has
been used successfully in many applications such as topic
modeling and hyperspectral imaging [8], and audio source sep-
aration [7]. However, min-vol NMF is computationally hard to
solve. In this paper, after introducing the considered min-vol
NMF model in Section II, we propose a fast method to solve
min-vol NMF in Section III. Our method is an application of
a recent inertial block majorization-minimization framework
called TITAN [9]. Experimental results on real data sets show
that the proposed method performs better than the state of the
art; see Section IV.

II. MINIMUM-VOLUME NMF
In the noiseless case, the exact NMF model is M = WH

where M ∈ Rm×n+ denotes the measured data, W ∈ Rm×r+

(resp. H ∈ Rr×n+ ) denotes the left factor (resp. the right
factor). The idea behind the min-vol criterion, a.k.a. Craig’s
belief [10], is that the convex hull spanned by the columns of
W, denoted conv(W), should embrace all the data points as
tightly as possible. In the absence of noise, min-vol NMF is
formulated as follows

min
W,H

det(W>W) (1a)

s.t. M = WH, (1b)

H ≥ 0, W ≥ 0, 1>H = 1>, (1c)

where 1 is a vector of appropriate size containing only ones.
The constraint (1c) ensures that every data point lies within
the convex hull spanned by the columns of W, that is,
M(:, j) ∈ conv(W) for all j. The volume of the convex hull
of W and the origin in the subspace span by columns of W,
is proportional to det(W>W); see for example [5]. Under
the sufficiently scattered conditions (SSC), which requires the
columns of M to be sufficiently spread within conv(W) or,
equivalently, that H is sufficiently sparse, min-vol NMF has
an essentially unique solution [5], [6]. A drawback of (1c)
is that it requires the entries in each column of H to sum to
one, which is not without loss of generality: it imposes that the
columns of M belong to the convex hull of the columns of W
as opposed to the conical hull when the equality constraints
of (1c) are absent; see for example [2, Chapter 4].
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It was recently shown that the same model where the
constraint 1>H = 1> is replaced with 1>W = 1> retains
identifiability [7]. The sum-to-one constraint on the columns
of W, that is, 1>W = 1>, can be assumed w.l.o.g. via
the scaling ambiguity of the rank-one factors W(:, k)H(k, :)
in any NMF decomposition. Moreover, the model with the
constraint on W was shown to be numerically much more
stable as it makes W better conditioned which is important
because computing the derivative of det(W>W) requires
computing the inverse of W>W. We refer the interested
reader to [2, Chapter 4.3.3] for a discussion on these models.

In the presence of noise, min-vol NMF is typically formu-
lated via penalization. In this paper, we consider the following
min-vol NMF model

min
W,H

1

2
‖M−WH‖2F +

λ

2
log det(W>W + δIr)

s.t. H ≥ 0, W ≥ 0, 1>W = 1>,

(2)

where ‖ . ‖F is the Frobenius norm, λ > 0 is a parameter
balancing the two terms in the objective function, Ir is the
r × r identity matrix, and δ > 0 is a small parameter that
prevents log det(W>W) from going to −∞ if W is rank
deficient [11]. The use of the logarithm of the determinant is
less sensible to very disparate singular values of W, leading
to better practical performances [8], [12].
Applications. In hyperspectral unmixing (HU), each column
of M contains the spectral reflectance of a pixel, each row of
M corresponds to the reflectance of a spectral band among
all pixels, each column of W is the spectral signature of an
endmember (a pure material in the image), and each column of
H contains the proportion of each identified pure material in
the corresponding pixel; see [13]. Geometrically, the min-vol
NMF in (2) applied to HU consists of finding endmembers
such that the convex hull spanned by them and the origin
embraces as tightly as possible every pixels in M. This is
the so-called Craig’s belief [10]. In document classification,
M is a word-by-document matrix so that the columns of W
correspond to topics (that is, set of words found simultaneously
in several documents) while the columns of H allow to assign
each documents to the topics it discusses [8].

III. NEW ALGORITHM FOR MIN-VOL NMF

As far as we know, all algorithms for min-vol NMF rely
on two-block coordinate descent methods that update each
block (W or H) by using some outer optimization algorithm
to solve the subproblems formed by restricting the min-vol
NMF problem to each block. For example, the state-of-the-
art method from [11] uses Nesterov fast gradient method to
update each factor matrix, one at a time.

Our proposed algorithm for (2) will be based on the TITAN
framework from [9]. TITAN is an inertial block majorization
minimization framework for nonsmooth nonconvex optimiza-
tion. It updates one block at a time while fixing the values
of the other blocks, as previous min-vol NMF algorithms. In
order to update a block, TITAN chooses a block surrogate
function for the corresponding objective function (a.k.a. a

majorizer), embeds an inertial term to this surrogate function
and then minimizes the obtained inertial surrogate function.
When a Lipschitz gradient surrogate is used, TITAN reduces
to the Nesterov-type accelerated gradient descent step for each
block of variables [9, Section 4.2]. The difference of TITAN
compared to previous min-vol NMF algorithms is threefold:

1) The inertial force (also known as the extrapolation, or
momentum) is used between block updates. This is a
crucial aspect that will make our proposed algorithm
faster: when we start the update of a block of variables
(here, W or H), we can use the inertial force (using the
previous iterate) although the other blocks have been
updated in the mean time.

2) TITAN allows to update the surrogate after each update
of W and H, which was not possible with the algorithm
from [11] because it applied fast gradient from convex
optimization on a fixed surrogate.

3) It has subsequential convergence guarantee, that is, every
limit point of the generated sequence is a stationary point
of Problem (2). Note that the state-of-the-art algorithm
from [11] does not have convergence guarantees.

Remark. The block prox-linear (BPL) method from [14] can
be used to solve (2) since the block functions in W 7→
1
2‖M−WH‖2F and in H 7→ 1

2‖M−WH‖2F have Lipschitz
continuous gradients. However, BPL applies extrapolation to
the Lipschitz gradient surrogate of these block functions and
requires to compute the proximal point of the regularizer
λ
2 log det(W>W+ δIr), which does not have a closed form.
In contrast, TITAN applies extrapolation to the surrogate
function of W 7→ f(W,H) with a surrogate function for
the regularizer λ

2 log det(W>W + δIr) (see Section III-A1).
This allows TITAN to have closed-form solutions for the sub-
problems, an acceleration effect, and convergence guarantee.

A. Surrogate functions

An important step of TITAN is to define a surrogate function
for each block of variables. These surrogate functions are
upper approximation of the objective function at the current
iterate. Denote

f(W,H) =
1

2
‖M−WH‖2F +

λ

2
log det(W>W + δIr)

and suppose we are cyclically updating (W,H). Let us denote
uWk

(W) the surrogate function of W 7→ f(W,Hk) to
update Wk, that is,

f(W,Hk) ≤ uWk
(W) for all W ∈ XW, (3)

where uWk
(Wk) = f(Wk,Hk) and XW is the feasible

domain of W. Similarly, let us denote uHk
(H) the surrogate

function of H 7→ f(Wk+1,H) to update Hk, that is

f(Wk+1,H) ≤ uHk
(H) for all H ∈ XH, (4)

where uHk
(Hk) = f(Wk+1,Hk) and XH is the feasible

domain of H.
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1) Surrogate function and update of W: Denote A =
W>W+δIr, Bk = W>

k Wk+δIr and Pk = (Bk)
−1. Since

log det is concave, its first-order Taylor expansion around Bk

leads to log det(A) ≤ log det(Bk) + 〈(Bk)
−1,A − Bk〉.

Hence,

f(W,Hk) ≤ f̃Wk
(W) :=

1

2
‖M−WHk‖2F

+
λ

2
〈Pk,W>W〉+ C1, (5)

where C1 is a constant independent of W. Note that the
gradient of W 7→ f̃Wk

(W), being equal to

(WHk −M)H>k + λWPk,

is LkW-Lipschitz continuous with LkW = ‖HkH
>
k + λPk‖2.

Hence, from (5) and the descent lemma (see [15, Section 2.1]),

f(W,Hk) ≤ uWk
(W) := 〈∇f̃Wk

(Wk),W〉

+
LkW
2
‖W −Wk‖2F + C2, (6)

where C2 is a constant depending on Wk. We use the
surrogate uWk

(W) defined in (6) to update Wk. As TITAN
recovers Nesterov-type acceleration for the update of each
block of variables [9, Section 4.2], we have the following
update for W:

Wk+1 = argmin
W∈XW

〈∇f̃Wk
(Wk),W〉+

LkW
2
‖W −Wk‖2F ,

= P

(
Wk +

(M−WkHk)H
>
k − λWkP

LkW

)
,

(7)

where P performs column wise projections onto the unit
simplex as in [16] in order to satisfy the constraint on W
in (2), and where Wk is an extrapolated point, that is, the
current point Wk plus some momentum,

Wk = Wk + βkW(Wk −Wk−1), (8)

where the extrapolation parameter βkW is chosen as follows

βkW = min

 αk − 1

αk+1
, 0.9999

√
Lk−1W

LkW

 , (9)

α0 = 1, αk = (1+
√
1 + 4α2

k−1)/2. This choice of parameter
satisfies the conditions to have a subsequential convergence of
TITAN, see Section III-C.

2) Surrogate function and update of H: Since

∇Hf(Wk+1,H) = W>
k+1(Wk+1H−M),

the gradient of f according to H is LkH-Lipschitz continuous
with LkH = ‖W>

k+1Wk+1‖2. Hence, we use the following
Lipschitz gradient surrogate to update Hk:

uHk
(H) = 〈∇Hf(Wk+1,Hk),H〉+

LkH
2
‖H−Hk‖2F+C3,

(10)

where C3 is a constant depending on Hk. We derive our
update rule for H by minimizing the surrogate function from
Equation (10) embedded with extrapolation,

Hk+1 = argmin
H∈XH

〈∇Hf(Wk+1,Hk),H〉+
LkH
2
‖H−Hk‖2F ,

=

[
Hk +

1

LkH
W>

k+1(M−Wk+1Hk)

]
+

,

(11)

where [ . ]+ denotes the projector setting all negative values to
zero, and Hk is the extrapolated Hk:

Hk = Hk + βkH(Hk −Hk−1), (12)

where, as for the update of W,

βkH = min

 αk − 1

αk+1
, 0.9999

√
Lk−1H

LkH

 . (13)

B. Algorithm

Note that the update of W in (7) and H in (11) was
described when the cyclic update rule is applied. Since TITAN
also allows the essentially cyclic rule [9, Section 5], we can
update W several times before switching updating H, and
vice versa. This leads to our proposed method TITANized
min-vol, see Algorithm 1 for the pseudo code. The stopping
criteria in lines 4 and 15 is the same as in [11]. The way λ
and δ are computed is also identical to [11]. Let us mention
that technically the main difference with [11] resides in how
the extrapolation is embedded. In [11] the Nesterov sequence
is restarted and evolves in each inner loop to solve each
subproblem corresponding to each block. In our algorithm,
the extrapolation parameter βW (and βH) for updating each
block W (and H) is updated continuously without restarting.
It means we are accelerating the global convergence of the
sequences rather than trying to accelerate the convergence
for the subproblems. Moreover, TITAN allows to update the
surrogate function at each step, while the algorithm from [11]
can only update it before each subproblem is solved, as it
relies on Nesterov’s acceleration for convex optimization.

C. Convergence guarantee

In order to have a convergence guarantee, TITAN requires
the update of each block to satisfy the nearly sufficiently
decreasing property (NSDP), see [9, Section 2]. By [9, Section
4.2.1], the update for H of TITANized min-vol satisfies the
NSDP condition since it uses a Lipschitz gradient surrogate
for H 7→ f(W,H) combined with the Nesterov-type ex-
trapolation; and the bounds of the extrapolation parameters
in the update of H are derived similarly as in [9, Section
6.1]. However, it is important noting that the update for W of
TITANized min-vol does not directly use a Lipschitz gradient
surrogate for W 7→ f(W,H). We thus need to verify NSDP
condition for the update of W by another method that is
presented in the following.

The function uWk
(W) is a Lipschitz gradient surrogate

of f̃Wk
(W) and we apply the Nesterov-type extrapolation to
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Algorithm 1 TITANized min-vol

1: initialize W0 and H0,
2: α1 = 1, α2 = 1, Wold = W0,Hold = H0, LprevW =
‖H0H

>
0 + λ(W>

0 W0 + δIr)
−1‖2, LprevH = ‖W>

0 W0‖2
3: repeat
4: while stopping criteria not satisfied do
5: α0 = α1, α1 = (1 +

√
1 + 4α2

0)/2
6: P← (W>W + δIr)

−1

7: LW ← ‖HH> + λP‖2
8: βW = min

[
(α0 − 1)/α1, 0.9999

√
LprevW /LW

]
9: W←W + βW(W −Wold)

10: Wold ←W

11: W←P
[
W + (MH>−W(HH>+λP))

LW

]
12: LprevW ← LW

13: end while
14: LH ← ‖W>W‖2
15: while stopping criteria not satisfied do
16: α0 = α2, α2 = (1 +

√
1 + 4α2

0)/2

17: βH = min
[
(α0 − 1)/α2, 0.9999

√
LprevH /LH

]
18: H← H+ βH(H−Hold)
19: Hold ← H

20: H←
[
H+ W>(M−WH)

LH

]
+

21: LprevH ← LH

22: end while
23: until some stopping criteria is satisfied

obtain the update in (7). Note that the feasible set of W is
convex. Hence, it follows from [9, Remark 4.1] that

f̃Wk
(Wk) +

LkW(βkW)2

2
‖Wk −Wk−1‖2F

≥ f̃Wk
(Wk+1) +

LkW
2
‖Wk+1 −Wk‖2F . (14)

Furthermore, we note that f̃Wk
(Wk) = f(Wk,Hk), and

f̃Wk
(Wk+1) ≥ f(Wk+1,Hk). Therefore, from (14) we have

f(Wk,Hk) +
LkW(βkW)2

2
‖Wk −Wk−1‖2F

≥ f(Wk+1,Hk) +
LkW
2
‖Wk+1 −Wk‖2F ,

which is the required NSDP condition of TITAN. Conse-
quently, the choice of βkW in (9) satisfy the required condition
to guarantee subsequential convergence [9, Proposition 3.1].

On the other hand, we note that the error function W 7→
e1(W) := uWk

(W) − f(W,Hk) is continuously differen-
tiable and ∇We1(Wk) = 0; similarly for the error function
H 7→ e2(H) := uHk

(H) − f(Wk+1,H). Hence, it follows
from [9, Lemma 2.3] that the Assumption 2.2 in [9] is satisfied.
Applying [9, Theorem 3.2], we conclude that every limit point
of the generated sequence is a stationary point of Problem (2).
It is worth noting that as TITANized min-vol does not apply
restarting step, [9, Theorem 3.5] for a global convergence is
not applicable.

IV. NUMERICAL EXPERIMENTS

In this section we compare TITANized min-vol to [11], an
accelerated version of the method from [8] (for p = 2), on
two NMF applications: hyperspectral unmixing and document
clustering, which are dense and sparse data sets, respectively.
All tests are performed on MATLAB R2018a, on a PC with
an Intel® Core™ i7 6700HQ and 24GB RAM. The code is
available from https://github.com/vuthanho/titanized-minvol.

The data sets used are shown in Table I. For each data set,
each algorithm is launched with the same random initializa-
tions, for the same amount of CPU time. In order to derive
some statistics, for both hyperspectral unmixing and document
clustering, 20 random initializations are used (each entry of
W and H are drawn from the uniform distribution in [0,1]).
The CPU time used for each data set is adjusted manually, and
corresponds to the maximum displayed value on the respective
time axes in Fig. 1; see also Table II.

data set m n r
Urban 162 94249 6
Indian Pine 200 21025 16
Pavia Univ. 103 207400 9
San Diego 158 160000 7
Terrain 166 153500 5
20 News 61188 7505 20
Sports 14870 8580 7
Reviews 18483 4069 5

TABLE I: data sets used in our experiments and their respec-
tive dimensions

For display purposes, for each data set, we compare the
average of the scaled objective functions according to time,
that is, the average of (f(W,H)− emin)/‖M‖F where emin

is the minimum obtained error among the 20 different runs
and among both methods. The results are presented in Fig. 1.
On both hyperspectral and document data sets, TITANized
min-vol converges on average faster than [11] except for the
San Diego data set (although TITANized min-vol converges
initially faster). For most tested data sets, min-vol [11] cannot
reach the same error as TITANized min-vol within the allo-
cated time. In particular, TITANized min-vol achieves a lower
error in 94 out of the 100 runs for the hyperspectral images
(5 images with 20 random initialization each), and 55 out of
60 for the document data sets (3 sets of documents with 20
random initialization each).

We also reported in Table II TITANized min-vol’s lead time
over [11] when the latter reaches its minimum error after the
maximum allotted CPU time. The lead time is the time saved
by TITANized min-vol to achieve the error of the method
from [11] using the maximum allotted CPU time. On average,
TITANized min-vol is twice faster than [11], with an average
gain of CPU time above 50%.

To summarize, our experimental results show that TI-
TANized min-vol has a faster convergence speed and smaller
final solutions than [11].
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data set Our method’s CPU time Saved
lead time (s) for [11] CPU time

Urban 44 60 73%
Indian Pines 25 30 83%
Pavia Univ. 68 90 76%
San Diego NaN 120 0%
Terrain 44 60 73%
20News 221 300 74%
Reviews 26 30 80%
Sports 15 30 50%

TABLE II: TITANized min-vol’s lead time over min-vol [11]
to obtain the same minimum error.

V. CONCLUSION AND DISCUSSION

We developed a new algorithm to solve min-vol NMF (2)
based on the inertial block majorization-minimization frame-
work of [9]. This framework, under some conditions that
hold for our method, guarantees subsequential convergence.
Experimental results show that this acceleration strategy per-
forms better than the state-of-the-art accelerated min-vol NMF
algorithm from [11]. Future works will focus on different types
of acceleration such as Anderson’s acceleration [17], and on
different constraints on W and/or H to address some specific
applications.
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Fig. 1: Evolution w.r.t. time of the average of (f(W,H) −
emin)/‖M‖F for the different data sets.
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