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Abstract—Despite being able to approximate the outputs of a
wide class of (weakly) nonlinear dynamical systems, the finite-
memory discrete-time Volterra models known as Volterra filters
(VF) are notoriously too heavy from a computational point of
view, due to the often huge number of parameters needed to
fully describe their kernels. This shortcoming has prompted the
development of alternative, low-complexity approximate models,
among which low-rank tensor-based approaches figure promi-
nently. In this work, we argue that for bilinear (or more generally,
linear-analytic) systems, the Volterra kernels in the so-called
regular form are naturally structured in the form of a tensor-
train decomposition, a property that can be easily exploited
for achieving complexity reduction. We compare this proposed
approach with other existing tensor-based ones in the case where
state-space equations are known but typically hard and/or too
costly to realize in discrete-time, which motivates the use of low-
complexity discrete-time nonlinear filters. Our numerical results
illustrate the benefits of our proposal in an example involving a
nonlinear loudspeaker of known state-space equations.

Index Terms—nonlinear system, Volterra model, tensor decom-
position.

I. INTRODUCTION

The mathematical modeling of dynamical systems is a
cornerstone of modern science and engineering. In many cases,
such systems exhibit significantly nonlinear behavior that
needs to be accurately modeled in order to meet application-
specific goals. To accomplish this task, a practitioner can often
choose among several kinds of nonlinear models, each with
its own strengths and drawbacks.

Among them, the Volterra model applies to a wide class of
mildly nonlinear systems—namely, those with fading memory,
as shown by the seminal work of Boyd and Chua [1]. When
used for simulating or predicting system outputs, the discrete-
time finite-memory Volterra model (also called Volterra filter)
is conceptually simple to implement and stable by construc-
tion, while still accurate provided that its memory (in samples)
is sufficiently long.

The price to pay, however, is the typically high parametric
complexity of the model, especially when its degree is moder-
ately high and/or its memory is long [2]. A line of research has
thus been dedicated to finding ways of alleviating this short-
coming by proposing alternative, more sophisticated models
that are built on the Volterra model and allow trading some
precision for a significant reduction in complexity. Examples
include the sparsification of Volterra kernels, possibly coupled

with an interpolation scheme [3], [4], and the use of low-rank
tensor decompositions to approximate the kernels [5], [6].

It was shown in previous works that this tensor-based
approach can bring a dramatic reduction of complexity whilst
only incurring a small loss of precision [2], [6]. This is
in particular achieved by a low-rank approximate canonical
polyadic decomposition (CPD) of the symmetric kernels that
characterize a nonlinear loudspeaker model, which leads to
a realization consisting of a filterbank followed by simple
nonlinearities [5]. Although this idea can yield remarkable
results, computing an approximate CPD is hard and involves
pitfalls such as the possible non-existence of best approxi-
mations [7]. As an alternative, the recent work [6] has opted
for the tensor train (TT) decomposition [8], whereby kernel
elements hn1,...,np are written as a chain of products of
the form a1(n1)TA2(n2) . . .Ap−1(np−1)ap(np), where the
dimensions of matrices Ai (known as TT-ranks) are small,
possibly bringing a high reduction in parametric complexity
with little loss of precision. Moreover, TT approximation does
not suffer from the same intricacies as with the CPD, and can
in fact be performed by a sequence of truncated SVDs [8].

Here we take a different direction, choosing to trade some
generality (rather than precision) for a reduction of complexity.
Specifically, we restrict ourselves to Volterra kernels of bilinear
systems (and thus of linear-analytic systems [9], as explained
below), and show that in the so-called regular form these
kernels already have a natural exact TT structure with the
same matrices Ai for all kernels, and that their TT-ranks are
a function of the state dimension. Finally, this TT structure is
shown to lead to a cascade realization with much smaller com-
putational complexity than a Volterra filter (VF), as required.

In fact, this approach applies more broadly to linear-analytic
system by virtue of the Carleman bilinearization procedure,
which allows computing the exact Volterra kernels of any
such a system by first constructing a bilinear system having
the same kernels up to a chosen degree P [9]. As we will
see, the TT-ranks are in this case a function of the dimension
of the linear-analytic system’s state but also of P . Several
important real-world devices, such as loudspeakers [10], RF
power transistors [11] and underwater acoustic transducers
[12] can be modeled as linear-analytic systems. Often this
arises from nonlinear reactances or the reactive coupling of
instantaneous non-linearities.
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For illustration, we consider a scenario where a discrete-
time model for an automotive loudspeaker of known (linear-
analytic) state-space equations [10] is required. As a direct
discretization is typically hard or too costly for practical
use, several alternative models are derived using the Volterra
kernels computed from these equations. Our results highlight
the benefits of exploiting the natural TT structure described
above, as opposed to employing the approaches of [5], [6].

In the following, we assume that the reader is familiar with
basic notions pertaining to tensors, as reviewed e.g. by [13].

II. THE TENSOR TRAIN DECOMPOSITION

The tensor train (TT) decomposition, whose name alludes
to the chain of products that describes its elements, was
introduced in [8] with the goal of allowing a low-dimensional
representation of a large tensor whose storage would otherwise
be prohibitively unwieldy. Furthermore, it can reduce the
complexity of performing certain operations involving that
tensor. Concretely, the TT decomposition of an N1×· · ·×Np
tensor H expresses its elements hn1,...,np

as

hn1,...,np
= a1(n1)TA2(n2) . . .Ap−1(np−1)ap(np), (1)

where vectors a1(n1) and ap(np) are respectively the n1th
and npth columns of matrices A1 ∈ RR1×N1 and Ap ∈
RRp−1×Np , and for i = 2, . . . , p − 1 the matrix Ai(ni)
is the nith lateral slice of a tensor Ai ∈ RRi−1×Ni×Ri .
Collectively, these matrices and tensors are known as the (TT)
cores of the decomposition (1), and their “internal” dimensions
R1, . . . , Rp−1 are called TT-ranks.

In order to take advantage of the aforementioned
complexity-reducing properties of the TT decomposition, one
usually seeks to compute TT cores describing a target tensor.
This description, however, is typically only approximate, and
thus the form (1) is effectively used to model some data in
tensor form.

As we will see, this expedient has been used by [6] to reduce
the cost of computing the output of a Volterra model, which is
given by a polynomial in a vector u ∈ RN comprising input
samples, and can be written as a p-fold contraction of a tensor
H ∈ RN×···×N (containing Volterra kernels) with u:

H(u) :=
∑N
n1=1 · · ·

∑N
np=1 hn1,...,np

∏p
i=1 uni

. (2)

This computation has cost O(Np). But if hn1,...,np approxi-
mately decomposes as in (1), then by plugging this expression
into (2) one can decouple the summations, obtaining H(u) ≈∑
n una1(n)T

∑
n unA2(n) . . .

∑
n unAp−1(n)

∑
n unap(n),

which now costs O(N(R1 +
∑p−1
i=2 Ri−1Ri + Rp)), thus

being cheaper when the TT-ranks are sufficiently small.
As we will explain later, our work takes a different route,

leveraging the TT decomposition of Volterra kernels in the so-
called regular form, whose TT cores follow directly from the
state-space description of a linear-analytic system. Although
for such regular kernels (2) is replaced by a sequential
“contraction-like” computation, the decomposition (1) can still
be exploited for efficiency, leading to a cascade realization of
the system.

III. VOLTERRA SERIES REPRESENTATION OF BILINEAR
AND LINEAR-ANALYTIC SYSTEMS

A. The Volterra series and regular kernels

The Volterra series of a causal (single-input, single-output
and time-invariant) nonlinear system expresses its output sig-
nal y(t) in terms of multiple convolution integrals of products
of the input signal u(t) with certain functions vp called
Volterra kernels: y(t) =

∑∞
p=1 yp(t), with

yp(t) =

∫
R+

· · ·
∫
R+

vp(τ1, . . . , τp)

p∏
i=1

u(t− τi)dτ1 . . . dτp.

Each component yp is known as the pth-degree homogeneous
subsystem output, as it gets scaled by a factor αp if u is
multiplied by α. Several results on the convergence of the
series have been derived, see e.g. [14].

A system that admits a (convergent) Volterra series is thus
completely described by its kernels, just like the impulse
response completely describes a linear time-invariant system.
However, the symmetry of

∏p
i=1 u(t−τi) implies such kernels

are not unique, and one usually adds some constraint to
restore uniqueness: commonly assumed (unique) kernel forms
are the symmetric form, which is invariant with respect to a
permutation of its arguments, and the triangular form, which
is null outside the domain τ1 ≤ · · · ≤ τp.

As shown ahead, the less common form known as “regular”1

[9] naturally possesses TT structure or, in other words, has an
exact TT decomposition. It is obtained from the triangular
form by the change of variables θp = τ1 and θi = τp−i+1 −
τp−i for i = 1, . . . , p−1. Hence, denoting such regular kernels
by hp and defining θ̄i =

∑p
j=1 θj , gives

yp(t) =

∫
R+

· · ·
∫
R+

hp(θ1, . . . , θp)

p∏
i=1

u(t−θ̄i)dθ1 . . . dθp. (3)

B. Kernels of bilinear and linear-analytic systems

Consider the state-space description of a nonlinear system

d
dt x(t) = f(x(t)) + g(x(t))u(t), y(t) = ρ(x(t)), (4)

where x(t) ∈ Rm is the state at time t, u is the input, y is the
output and f ,g : Rm → Rm and ρ : Rm → R are analytic.
Such systems are called linear-analytic [15], since u enters
linearly in the state equation, and admit convergent Volterra
series for inputs of sufficient small L∞ norm:

Theorem 1 ( [15]): Suppose the solution of a linear-analytic
system for u(t) ≡ 0 on the interval t ∈ [0, T ] exists. Then,
there exists ε > 0 such that the system admits a uniformly
convergent Volterra series representation (3) on [0, T ] for all
inputs satisfying supt∈[0,T ] |u(t)| < ε.

Bilinear systems, in particular, amount to a simple special
case of (4) where f , g and ρ are replaced by linear maps:

d
dt z(t) = Fz(t) + Gz(t)u(t) + bu(t), y(t) = cTz(t). (5)

1We adopt this terminology for historical reasons, though it is not related
to regularity in the usual sense.
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For this particular class, Theorem 1 can be strengthened by
only requiring u to be bounded on [0, T ]. It can also be shown
that the regular Volterra kernels of a bilinear system satisfy

hp(τ1, . . . , τp) = cTeFτpGeFτp−1G . . .GeFτ1b, (6)

for τi ≥ 0, i = 1, . . . , p.
The importance of bilinear systems stems in no small part

from them being able to approximate linear-analytic systems
to an arbitrary degree. More precisely, from [9, Chapter 3]
follows the constructive result:

Proposition 1: Given any linear-analytic system (4), there
exists a bilinear system of dimension M =

(
m+P
P

)
− 1 whose

first P homogeneous subsystem outputs coincide with those of
the linear-analytic system for all bounded inputs u. The vectors
b, c and matrices F,G are explicitly given by the Carleman
bilinearization of (4): b =

[
bT
0 0T

]T
, c =

[
cT0 0T

]T
,

F=


F1,1 F1,2 . . . F1,P

O2,1 F2,2 . . . F2,P

...
...

. . .
...

OP,1 OP,2 . . . FP,P

,G=


G1,1 G1,2 . . . G1,P−1 O1,P

G2,1 G2,2 . . . G2,P−1 O2,P

OP,1 G3,2 . . . G3,P−1 O3,P

...
...

. . .
...

...
OP,1 OP,2 . . . GP,P−1 OP,P

;

where F contains the Taylor expansion coefficients of f up
to degree P , whereas those of g appear in b0 ∈ Rm and in
G, and those of ρ appear in c0. The blocks Oi,j contain only
zeros and Oi,j ,Fi,j ,Gi,j ∈ RMi×Mj , where Mi =

(
m+i−1

i

)
.

From this follows a key observation, exploited ahead:
Corollary 1: For any P ∈ N, the first P (regular) Volterra

kernels of a linear-analytic system of dimension m satisfy (6),
where F,G,b and c are as described by Proposition 1.

C. Discrete-time kernels and Volterra filters

For digital signal processing, we consider a discrete-time
version of (3), with n̄i =

∑p
j=i nj and truncated in memory:

yp(n) = T ps

N−1∑
np=0

. . .

N−1∑
n1=0

hp(n1, . . . ,np)

p∏
i=1

u(n− n̄i), (7)

where the scaling factor T ps is discussed below. Truncating
now the degree gives y(n) =

∑P
p=1 yp(n). We refer to this

polynomial model as a regular Volterra filter (VF). It is BIBO
stable by construction and conceptually simple.

Unfortunately, though, the amount of multiplications re-
quired to compute y(n) via the above expressions grows as
O(PNP ), hence quite swiftly in P and N . This well-known
shortcoming of the VF precludes its use for systems of even
moderately long memory (in samples) when relatively high
orders (say, P > 3) are required for precise modeling.

If a sampling period Ts is sufficiently small so that the
kernels and input in (3) are approximately constant in an
interval of width Ts in all time arguments, then the sam-
pled output yp(n) := yp(t)|t=nTs is approximated by (7).2

This follows directly from segmenting the integrals in (3)
in intervals of width Ts and will be assumed throughout

2For simplicity, we opt to use, with some abuse of notation, the same
symbol for discrete-time and continuous-time variables.

a1
u(n)

z1(n)
y3(n)×

z2(n)

×A aT
3

y2(n)
cT

y1(n)
cT

Fig. 1. Cascade-TT realization of a Volterra model of order P = 3.

the paper. For simplicity, we will actually absorb the factor
Ts into the discrete-time signal u(n), so that T ps will not
explicitly appear as it does in (7). For linear-analytic systems
in particular, Corollary 1 implies that the discretized regular
kernels hp(n1, . . . , np) of orders 1 up to P have the form
hp(n1, . . . , np) = cTeFTsnpG . . .GeFTsn1b. We show next
how this property can be exploited to obtain a much more
efficient finite-memory model than a VF. In a upcoming paper,
we will drop the finite memory constraint and derive low-rank
infinite-memory realizations of bilinear kernels [16].

IV. TENSOR-TRAIN VOLTERRA MODEL OF
LINEAR-ANALYTIC SYSTEMS

A. Tensor-train structure of linear-analytic system kernels
From the above discussion and (1) it follows that the

discretized kernels of a linear-analytic system can be seen
as tensors with TT structure, namely hp(n1, . . . , np) =
aTp (np)A(np−1) . . .A(n2)a1(n1), with

aTp (np) = cT eFTsnp G, a1(n1) = eFTsn1b, (8)

A(ni) = eFTsni G, i = 2, . . . , p− 1. (9)

The TT-ranks of hp seen as a TT-structured tensor are thus
all equal to M =

(
m+P
P

)
− 1. Furthermore, these cores are

completely characterized by two M ×M matrices F,G and
two M -dimensional vectors c,b. We will see next how taking
this property into account can also bring a reduction of the
computational complexity of a VF realization.

B. Cascade-TT (CaTT) realization of regular kernels
Using P (the model degree) in place of p and replacing the

kernels by their TT expressions with cores (8)–(9), we can
write (7) as a cascade of P filters, of which P −2 have vector
inputs and vector outputs. It turns out that the (finite-memory)
impulse response of each of those filters is one of the three
possible cores defined by (8)–(9), giving the outputs:

z1(n) =
∑N−1
n1=0 a1(k)u(n− n1), (10)

zp(n) =
∑N−1
ni=0 A(ni)zp−1(n− np)u(n− np), (11)

yP (n) =
∑N−1
nP=0 a

T
P (nP )zP−1(n− nP )u(n− nP ), (12)

where p = 2, . . . , P−1. Furthermore, since these filters are the
same for all kernels of orders 1 up to P , their outputs can be
reused to compute all subsystem outputs, yp(n) = cTzp(n),
p = 1, . . . , P − 1. A depiction of this scheme is in Fig. 1 for
P = 3, where the single and double arrows indicate scalar-
and vector-valued signals, respectively.

Let us now calculate the computational complexity of this
realization, in terms of the number of (scalar) performed
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multiplications per output sample. Since our focus is on the
case where cores are given by (8)–(9), where F, G, b and
c all come from the Carleman bilinearization of a linear-
analytic system, we will take into account the sparse structure
of these matrices and vectors, as described by Proposition 1.
This implies, in particular that A(ni) has a block structure
identical to that of G described in Proposition 1, with blocks
Aj,k(ni) ∈ RMj×Mk , where Mi is as defined in Proposition
1. We will also assume that the matrices A(n), as well as the
vectors a1(n), have been pre-computed for n = 0, . . . , N − 1
from their definition (8)–(9).

First, from the structure of F and b it follows that a1(n1)
can only have its first M1 components nonzero, and hence it
takes NM1 multiplications to compute z1(n). By induction
and from the block structure of A(np), it can be shown then
for p = 2, . . . , P − 1 that zp(n) can only have

∑p
k=1Mk

nonzero components. From this follows that its computation
takes S1,p−1+N [(M1+M2+1)S1,p−1+

∑p
k=3MkSk−1,p−1]

multiplications, where Sj,k =
∑k
`=jM` and the second term

between brackets is absent when p = 2. It also follows that
yP (n) takes (N+1)S1,P−1 multiplications. Finally, since only
the first M1 elements of c can be nonzero, yp(n) = cTzp(n),
p = 1, . . . , P − 1, takes (P − 1)M1 multiplications. Adding
up all these multiplications, we get then for P > 1 a total of

CCaTT = NM1 + (N + 1)S1,P−1 + (P − 1)M1

+

P−1∑
p=2

S1,p−1+N [(M1+M2+1)S1,p−1+

p∑
k=3

MkSk−1,p−1].

For fixed m and P , this formula grows linearly in the memory
N , while the cost of a VF grows as O(NP ).

Remark 1: An additional reduction in computational com-
plexity can be achieved from low-rank (smaller than M )
approximate TT decompositions of the regular kernels. In this
paper, however, we will only focus on the exact decomposition
(8)-(9).

C. Comparison with other tensor-based approaches

Other approaches usually relate to a conventional VF with
triangular or symmetric kernels, with y(n) =

∑P
p=1 yp(n) and

yp(n) =

N−1∑
np=0

. . .

N−1∑
n1=0

vp(n1, . . . ,np)

p∏
i=1

u(n− ni). (13)

In the triangular case and reusing input products across all or-
ders up to P > 1, it takes CVF =

(
N+P
P

)
−1+

∑P
p=2

(
N+p−1

p

)
multiplications to calculate y(n) using (13).

1) Contraction-TT (CoTT): The approach closest to ours
is that of [6]. It is based on assembling all P kernels of a
conventional VF into a P th-order tensor V of dimensions
N + 1 × · · · × N + 1 in such a way that its output can
be written as a p-fold contraction y(n) = V(u(n)), where
u(n) = [1 u(n) . . . u(n − N + 1)]T. This identity
holds for symmetric and triangular kernels, but not for regular
ones. Then, as follows from the discussion in Section II,
an approximate TT decomposition of V can be exploited

to bring the computational cost of the contraction down to
CCoTT = (N + 1)(R1 + RP−1) + (N + 2)

∑P−1
p=2 Rp−1Rp +

min(R1, . . . , RP−1) multiplications. Now, even though this
approach is aimed at the case where the kernels are unknown
and must be identified from data, it can also be applied to
known (triangular or symmetric) kernels by constructing V

and then feeding it into a TT approximation algorithm, such
as the TT-SVD procedure [8]. However, unlike our proposal,
this strategy does not exploit the exact TT structure of regular
kernels, and one generally has to approximate V in order to
obtain cores with low TT-ranks.

2) Volterra-Parafac (VP): The VP structure proposed in
[5] approximates each discrete-time symmetric kernel vp
by a low-rank symmetric CPD, that is, vp(n1, . . . , np) ≈∑Qp

q=1

∏p
i=1 b

(p)
q (ni), where ni ∈ {0, . . . , N − 1} and Qp is

the (symmetric) rank. This allows approximating yp(n) by a
sum of powers of outputs of Qp linear systems with impulse
responses b(p)q ,

yp(n) ≈
∑Qp

q=1

(∑N−1
k=0 b

(p)
q (k)u(n− k)

)p
,

which costs Qp(N + p − 1) multiplications, leading to an
overall CVP = N +

∑P
p=2Qp(N + p − 1) complexity. While

this cost can be smaller than or comparable to CCaTT when
the ranks Qp are small, choosing such ranks and computing
the filters b(p)q from the kernels is a difficult task. In particular,
there is no algorithm for directly computing the filters from
a state-space description of a linear-analytic system. Instead,
one has to first compute the kernels and then find a rank-
Qp approximation for each vp [17], which is computationally
heavy for high p and involves pitfalls such as the non-existence
of best approximations3 [7]. By contrast, the cores of the CaTT
follow directly from the state-space equations by Carleman
bilinearization, without the need of computing kernels.

V. NUMERICAL RESULTS

We now apply the discussed structures to a bass loudspeaker
model, adapted [2] from [10], of dimension m = 3. As
the model is linear-analytic, each homogeneous subsystem
admits an exact CaTT model (up to memory truncation),
whose outputs are thus used as reference for comparison
with other structures. A pre-processing block in nonlinear
acoustic echo cancellation is a possible application. Responses
y(n) =

∑P
p=1 yp(n) are compared for 50 realizations of a

low-pass, π/4 bandwidth, Gaussian input u(n).
From the loudspeaker model, we follow [2] to calculate the

triangular kernels for a sampling frequency of 1/Ts = 5 kHz,
chosen to reduce the aliasing due to nonlinearity. Based on
their main diagonals plotted in Fig. 2 up to p = 4, a memory
of N = 120 is chosen for the (conventional) VF. The TT-SVD
procedure [8] is then applied to approximate the P th-order
tensor V containing the corresponding symmetric kernels, for
different choices of the SVD truncation threshold ε. We use
the label CoTT H for the higher ε = 0.1 cases, which have

3Constraining the CPD factors (e.g., by imposing orthogonality) can ensure
existence of solutions, but there are no physical grounds for doing so.
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Fig. 2. Diagonals vp(n, . . . , n) of triangular kernels (normalized to peak).
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Fig. 3. NMSE (in dB) of evaluated structures, defined with respect to the
output of CaTT: NMSE =

∑
n(y(n)− yCaTT(n))

2/
∑

n(yCaTT(n))
2.

TT-ranks (40, 36) for P = 3 and (40, 63, 33) for P = 4,
and use the label CoTT L for the lower ε = 0.01 (P = 3)
and ε = 0.05 (P = 4) cases, which have ranks (65, 63) and
(53, 117, 50), respectively. To compensate for their different
scales, we normalize all kernels by their respective `2 norms
before constructing V. To derive the VP structure, we compute
a CPD of each symmetric kernel with all ranks Qp = 19
when P = 3, and Qp = 63 when P = 4. As m = 3,
the TT-ranks of the CaTT structure all equal M = 19 for
P = 3 and M = 34 for P = 4. The choice N = 120
is also kept for this structure, its effective memory due to
n̄i =

∑p
j=i nj in (7) being though larger than N , better

approximating then the infinite-duration kernels. Its output is
thus used to define normalized mean-squared errors (NMSEs)∑
n(y(n)−yCaTT(n))2/

∑
n(yCaTT(n))2 for the outputs y(n)

of the other structures. As the ranks of the CoTT and VP
structures grow, so do their complexities, while their NMSEs
approach that of the VF.

Fig. 3 shows the (ensemble-average) NMSE of the VF,
CoTT and VP structures. The NMSEs increase with the
input power since this also increases the importance of the
higher-order kernel approximation errors. The corresponding
complexities, seen in Section IV, are given in Table I, where
the notation XeE stands for X×10E . It can be seen that
the proposed structure CaTT is, together with VP, among the
least costly ones (in particular, with a cost more than one order
of magnitude lower than that of CoTT), whilst it involves no
approximation (other than due to memory truncation), offering
the most precise realization among all alternatives.

VI. CONCLUSION

We have established and exploited a connection between
the tensor train decomposition and the discrete-time regular
Volterra kernels of linear-analytic systems, which had been

TABLE I
PER OUTPUT SAMPLE COMPLEXITIES OF THE COMPARED STRUCTURES, IN

NUMBER OF MULTIPLICATIONS

VF CaTT CoTT H CoTT L VP
P=3 6.1e5 4.7e3 1.8e5 5.2e5 4.7e3
P=4 1.9e7 2.3e4 3.2e5 7.8e5 2.3e4

hitherto unexplored. Thanks to the properties of this decom-
position, such a connection leads to a discrete-time model
whose realization bears a low complexity in terms of the
number of multiplications per sample output. One can thus
use this discrete-time model for efficiently predicting the target
system’s output. Our numerical results show how this strategy
can be more attractive than other tensor-based alternatives by
means of a nonlinear loudspeaker example.

Future work should study identification algorithms for the
proposed structure. A paper in preparation will investigate low-
rank infinite-memory realizations of bilinear kernels [16].
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