
Tensor-Based Multivariate Polynomial Optimization
with Application in Blind Identification

Muzaffer Ayvaz∗†, Lieven De Lathauwer∗†
∗Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium

†Group Science, Engineering and Technology, KU Leuven Kulak, Kortrijk, Belgium
{Muzaffer.Ayvaz, Lieven.DeLathauwer}@kuleuven.be

Abstract—Multivariate polynomial optimization prob-
lems are ubiquitous in signal processing, machine learn-
ing, and artificial intelligence. Examples include, but
are not limited to, blind source separation, classification,
multivariate polynomial regression, and tensor eigen-
value problems. Efficient algorithms for these problems
have been studied in the case where the problem can be
written as a best low rank tensor approximation. In the
same spirit, we aim to extend these algorithms to a larger
class of cost functions by representing multivariate
polynomials using compact tensor models. This tensor-
based multivariate polynomial optimization framework
will allow us to tackle a broader range of problems than
what is possible with existing methods. In this paper,
we focus on the symmetric CPD format for representing
multivariate polynomials, and show that exploiting this
structure results in efficient numerical optimization-
based algorithms. We demonstrate our approach for the
blind deconvolution of constant modulus signals, out-
performing state-of-the-art algorithms in computational
time while maintaining similar accuracy.

Index Terms—Blind deconvolution, blind identifica-
tion, constant modulus, multivariate polynomial, nu-
merical optimization, tensor decomposition

I. Introduction

Multivariate polynomial optimization (MPO) is a funda-
mental problem in signal processing, machine learning, and
artificial intelligence (AI). In the current information age,
the main challenge is to efficiently process and represent
large amounts of data from possibly heterogeneous sources,
while addressing MPO problems. Existing approaches for
MPO are computationally infeasible. For example, certain
MPO-type problems such as fault detection and image
classification can be written as semi-definite programming
(SDP) with convex relaxations [1]. SDP-based frameworks
such as CVX, SeDuMi, and SDPT3 do not scale well for
large-scale problems [2]–[4]. We aim to tackle this challenge
in this study.

For the processing and representation of high-order data,
tensors (higher-order arrays) have become indispensable,
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because they preserve the inherent structure of higher-order
data and can be decomposed uniquely under mild condi-
tions [5]–[7]. In many applications, such as face recognition
and epileptic seizure detection, optimization problems can
be written as a (coupled) tensor decomposition problem,
and are particular cases of MPO. Effective numerical
strategies based on standard optimization algorithms have
been developed for tensor decomposition problems and
applied in diverse fields [8]–[11].

Our contribution is to generalize these existing numerical
strategies to a broader class of problems beyond the
decomposition of given data in matrix/tensor format.
Examples include multivariate polynomial regression, mul-
tivariate logistic regression, and the tensor eigenvalue
problem with applications to blind source separation,
and magnetic resonance imaging [12]–[15]. In this study,
we introduce a general framework called tensor-based
multivariate polynomial optimization (TeMPO). First, we
define the optimization problem and show how to exploit
structure in the case where the data are represented by a
symmetric canonical polyadic decomposition (CPD). Next,
we illustrate the efficiency of our approach with the blind
deconvolution of constant modulus (CM) signals, which is
a basic signal processing problem arising in communication
systems [16].

We describe notation and tensor background in the next
section. Next, we explain our framework in Sec. III. In Sec.
IV, we discuss the derivation and implementation details of
the complex Gauss–Newton (GN) algorithm. We illustrate
the framework with the blind deconvolution of CM signals
in Sec. V. Lastly, we present numerical results in Sec. VI.

II. Notation and Definitions
A tensor is a higher-order generalization of a vector (first-

order) and a matrix (second-order). Following established
conventions in signal processing, we denote scalars, vectors,
matrices and tensors by a, a, A, and A, respectively.
The complex conjugate, transpose, conjugated transpose,
and inverse of matrix A are denoted as A, At, Ah, and
A−1, respectively. The matrix created by removing the
first row of A is denoted by Ã. Similarly, ã denotes
a vector a whose first element is removed. A vector
of length K with all entries equal to 1 is denoted by
1K . The outer product, Kronecker product, Khatri–Rao
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Fig. 1. Polyadic decomposition of a third order symmetric tensor T .
It is called canonical (CPD) if R is equal to the rank of T , i.e., R is
minimal. It allows compact representation of polynomials.

product and Hadamard product are denoted by ⊗, ⊗,
�, and ∗, respectively. The mode-n product of a tensor
A ∈ KI1×I2×...×IN (with K meaning R or C) and a vector
x ∈ KIn denoted by A ·n xt, is defined element-wise
as (A ·n xt)i1i2···in−1in+1···iN

=
∑IN

in=1 ai1i2···in···iN
xin

. The
mode-n matricization of A is the matrix A(n) collecting all
the mode-n vectors as its columns following the ordering
convention in [7]. A kth-order tensor A ∈ KI×...×I is
called symmetric if its entries do not change under the
permutation of its k indices and the matrix representations
of symmetric tensors in different modes are all equal. A
rank-1 tensor of order N is defined as the outer product
of N nonzero vectors. The rank of a tensor is equal to
the minimal number of rank-1 terms that produce the
tensor as their sum. The canonical polyadic decomposition
writes a tensor as a sum of R rank-1 tensors and is
denoted by

q
U(1), . . . , U(N)y, with its factor matrices U(n),

see Fig. 1, where R equals the rank of the tensor. For
symmetric tensors, all the factor matrices are equal, i.e.
T = JU, U . . . , U, ctK, where c ∈ RR is a vector of weights
which allows us to give minus signs to the factors for even-
degree symmetric tensors.

III. Tensor-Based Multivariate Polynomial
Optimization (TeMPO)

A general unconstrained optimization problem is:

min
z

f(θ, z) + h(z), (1)

in which f(θ, z) is the objective function, h(z) is the
regularization function, θ denotes available data, and
z contains the optimization variables. Generally, f(θ, z)
serves as the performance measure of the model to be
optimized and h(z) serves as the penalty term for the
structural constraints of the model parameters. State-of-
the-art numerical optimization-based algorithms and frame-
works have been proposed in the case where f(θ, z) can
be expressed as a matrix/tensor decomposition [10], [11],
[17]. Since all continuous functions can be approximated
by polynomials, we can reasonably assume that f(θ, z) is
approximately a multivariate polynomial. This allows us to
deal with a wider class of problems. Moreover, θ is often
available in structured tensor formats in applications due
to preprocessing techniques, such as tensorization and data
augmentation, applied a priori in the multiway analysis
[12]–[14], [18], [19].

We use tensors to represent multivariate polynomials.
An mth-order multivariate homogeneous polynomial p(z)
can be written by using mth-order tensor Tm as [18],

p(z) = T ·1 zt ·2 zt . . . ·m zt def= Tmzm.

Since all polynomials can be written as the sum of
homogeneous polynomials, any polynomial of order n can
be written by using tensors of orders up to n. Note that in
the tensor representation of polynomials, all tensors can
be assumed to be symmetric without loss of generality1.
We consider a simple MPO problem to put more

emphasis on the advantages of tensor representation:

min
z

f(z) = min
z

n∑
k=0
Tkzk,

where Tk denotes a kth-order symmetric tensor. The
representation of polynomials by tensors allows for new
insights. In many applications from signal processing,
these tensors are available in structured formats, such as
CPD, low multilinear rank (LMRA), tensor trains (TT)
and hierarchical Tucker (HT) [18]–[20], and the main
advantages of the proposed method lie here. The tensor
contraction Tkzk is the core computation of TeMPO in
the numerical optimization setting and can efficiently be
computed for large-scale tensors when the structure of
the tensor is exploited [21]. Indeed, even if the tensors
Tk are dense, contractions can be computed in a memory
efficient way by storing them in a compact or sparse format
[22]. Additionally, in the case of larger order polynomials,
efficient stochastic and/or randomized algorithms can be
integrated into the TeMPO framework, see, e.g., [23], [24].

Numerical optimization algorithms often require expres-
sions for the gradient, Gramian, Gramian-vector product
and/or Hessian. In this paper, we limit ourselves to the
GN algorithm and only derive the first-order derivative of
Tmzm for symmetric tensors and tensors in symmetric CPD
formats. The second-order derivatives can be computed
using a similar approach.

A. Derivative of Tmzm for Dense Symmetric Tensors
By using the definition of the gradient of a vector-valued

function and the mode-n product, one can easily obtain
the derivative of the function f(z) = Tmzm w.r.t. z for an
mth-order symmetric tensor Tm ∈ KI×···×I and z ∈ KI as:

∇f(z) = mT zm−1. (2)

B. Derivatives of T zm for Symmetric CPD Tensors
The CPD of an mth-order symmetric tensor Tm ∈

KI×...×I in matricized format can be written as:

T(n) = U(U�U� . . .�U)t def= U(U�(m−1))
t
.

1To see this, let us consider the homogeneous polynomial p(x, y) =
x3 + αx2y + βxy2 + y3. A third order symmetric tensor T with the
elements a111 = 1, a222 = 1, a112 = a121 = a211 = α/3, a221 =
a212 = a122 = β/3 can represent the polynomial.
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Using (2) and utilizing the property (A�B)t(C�D) =
(AtC)∗(BtD), we obtain the derivatives of the multilinear
forms for symmetric tensors in CPD format as:

∇f(z) = mU(Utz)∗(m−1). (3)

Exploiting symmetric CPD structure significantly reduces
both the computational complexity and storage require-
ments. We only need to store U instead of the full tensor
Tm and matrix-vector operations, as is clear in (3). This
is where our main speed-up is realized. A more detailed
description will be given in Sec. V.

IV. Complex GN Algorithm for TeMPO
Complex-valued signals are of fundamental interest in

signal processing. Optimization of real-valued functions in
complex variables is one of the fundamental approaches
to exploit the impropriety and non-circularity of signals
[25]. To this end, generalizations of standard numerical
optimization algorithms have been generalized to the
complex domain [17], [26]. Also, the GN algorithm is often
preferred when the cost function is a sum of squares thanks
to its convergence properties [27]. Here, we will briefly
explain the complex generalization of the GN algorithm,
which we will use in our illustrative example in Sec. V.
The complex Gauss–Newton (cGN) algortihm solves the
unconstrained nonlinear least-squares problem:

min
z,z

f(z, z) = min
z,z

1
2 ||r(z, z)||22 (4)

where f(z, z) is a real-valued function and r(z, z) is called
residual function. The Hessian for the cGN algorithm is a
Hermitian matrix defined as:

H =
[

Uzz Uzz
Uzz Uzz

]
,where Uzz = Uzz and Uzz = Uzz.

The blocks of the Hessian can be obtained by only using
the first-order information of r(z, z) as:

Uzz = 1
2

(
Jz

hJz + Jz
hJz

)
, Uzz = 1

2

(
Jz

hJz + Jz
hJz

)
,(5)

where Jz and Jz are the Jacobian matrices of r(z, z) w.r.t.
z and z, respectively. The cGN step pk at the kth iteration
for the optimization variable c = [z; z] is obtained by
solving the following linear system of equations,

Hpk = −gk, where gk =
[

∂f

∂z (zk), ∂f

∂z (zk)
]t

. (6)

Here, gk contains the gradient of the objective function (4)
w.r.t. z and z, respectively and can be written as:

∂f

∂z

h
= ∂f

∂z

h
= 1

2
(
Jz

hr + Jz
hr
)

. (7)

The most computationally expensive part of the algorithm
is to solve (6). We use the conjugate gradient Steihaug
method, which is implemented in TensorLab [9], [28] to
solve (6). This method does not require matrix inversion. To

Algorithm 1: cGN algorithm with (PC)CG-Steihaug
Input : r(z, z) – function to compute residual

z0 – initial condition
Output : z – the point where algorithm converged

1 while not converged do
2 Cache repeated variables
3 Compute r(zk, zk)
4 Compute gk using (7)
5 Solve (6) using (preconditioned) CG-Steihaug
6 Update zk

7 end

reduce the overall computational complexity, it is crucial to
reduce the number of CG iterations using preconditioning
techniques. Here, we use the block-Jacobi preconditioning
in view of the quasi-GN algorithm [26]. The preconditioner
is obtained by setting the off-diagonal blocks of Hessian
to zero, i.e. Uzz = Uzz = 0. The overall algorithm is
summarized in Algorithm 1.

V. Blind Deconvolution of CM Signals

In digital communication systems, the recovery of the
transmitted input signals from the received output signals,
which have been altered by the medium is one of the core
problems. In blind deconvolution, one attempts to find
the original input signal by only observing the output
signal. Thus, constraints on signals and/or channel have to
be imposed to obtain interpretable results. The constant
modulus (CM) criterion is a widely used input constraint
[29]. In this section, we apply our framework to the blind
deconvolution of CM signals by formulating as an MPO
problem. We limit ourselves to an autoregressive single-
input single-output (SISO) system [30], given by

L∑
l=0

wl · y[k − l] = s[k] + n[k], for k = 1, . . . , K, (8)

where y[k], s[k], and n[k] are the measured output signal,
the input signal and the noise at the kth measurement,
respectively. wl denotes the lth filter coefficient. By ignoring
the noise for ease of derivation, (8) can be written as:

Ytw = s, (9)

where Y ∈ CL×K is a Toeplitz matrix and its rows are
the subsequent observations under the assumption that
we have K + L− 1 samples y[−L + 1], . . . , y[K]. Also, the
vector w ∈ KL contains the filter coefficients and the kth
entry of the source vector s ∈ CK is the input signal at
the kth time instance, i.e. sk = s[k]. The aim of the blind
deconvolution problem is to determine the filter coefficients
w, using only the values Y. The CM property, which holds
for phase- or frequency-modulated signals [31], [32] can be
written as:

|sk|2 = c, for k = 1, 2, . . . , K. (10)
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Here, c is a constant scalar which is known a priori. By
substituting sk defined in (9) into (10), we obtain,(

Y�Y
)t(w⊗w) = c · 1K . (11)

Following the same intuition in [33], by multiplying (11)
from the left with a Householder reflector Q, generated for
c · 1K , and removing the first equation2, we obtain

M(w⊗w) = 0. (12)

Here, M = Q̃
(
Y�Y

)t. In applications, M(w ⊗w) will
not vanish exactly due to the noise. Hence, we look for the
solution which minimizes its norm. Thus, we obtain the
following MPO problem,

min
w,w

f(w, w) =min
w,w

1
2 ||M(w⊗w)||22 , (13)

under the normalization constraint ||w|| = 1.

A. Computation of the Objective Function

Computation of the objective function requires the
computation of the norm of the residual vector,

r(w, w) = Q̃
(
Y�Y

)t(w⊗w)/ ||w||2 ,

where w is normalized to be able to utilize algorithms
for unconstrained problems. As described in Sec. III-B,
we only need to compute Q̃(v ∗ v), where v = Ytw.
The multiplication of the reflector Q by a vector needs
only a single vector-vector multiplication, and (v ∗ v)
needs only elementwise products. Hence, the computation
is dominated by the computation of v. The explicit
computation of v requires L×K multiplications, which can
be efficient when the problem size is small, i.e. L� K. For
large-scale problems, exploiting the Toeplitz structure of
Y through the DFT algorithm reduces the computational
complexity to O (2N log(N) + N) where N = L + K.

B. Jacobian and Jacobian-vector Product

The Jacobian of r(z, z) w.r.t. z is given by

Jz = ∂r
∂z = Q̃D(v)Yt/ ||z||2 − r̃zt/||z||4,

using the derivations in Sec. III-B. Here, D(v) is a diagonal
matrix composed from the elements of v. Jz can be derived
in a similar way. Note that v is both needed in the
computation of the Jacobian and the residual, and therefore
it will be computed only once per iteration. Similar to Sec.
V-A, the computation of Jzx is dominated by Ytx = u.
The other operations, Q̃D(v)u and ztx, can be done in
O (K) and O (L) operations, respectively.

2The first equation is only a normalization constraint.

0 15 35
10−3

10−2

10−1

Signal-to-noise ratio (dB)

CP
U

Ti
m
e
(s
ec
on

ds
)

0 5 10 35
−50

−20

0

Signal-to-noise ratio (dB)

Re
la
tiv

e
er
ro
r
(d
B)

LS-CPD
OS-CMA
ACMA
TeMPO

Fig. 2. TeMPO is faster than other algorithms for SNR > 10(dB),
while obtaining more accurate results than ACMA.

C. Gradient and Gramian-vector Products
The computation of the gradient can be done using the

Jacobian-vector products Jzr and Jzr, see (7). Thanks to
the symmetry in (13), Jz = Jz. Thus, only two Jacobian-
vector products are sufficient for the computation of the gra-
dient. As mentioned in Sec. IV, we solve (6) using (precon-
ditioned) CG, which only requires the repeated Gramian-
vector products of the form Jz

hJzx and Jz
hJzx, see (5). By

using the equality of Jz = Jz, we need four Jacobian-vector
products, which require O (8N log(N) + 4N) additional
operations, when the DFT algorithm is utilized. As a result,
the per-iteration complexity of cGN algorithm for the blind
deconvolution of CM signals is logarithmic and particular
operations are listed in Table I.

VI. Experimental Results
A number of algorithms have been developed to solve (11)

and (12). The analytical CM algorithm (ACMA) [32] writes
(12) as a generalized matrix eigenvalue problem. Gradient
descent and stochastic gradient descent algorithms have
also been proposed for the minimization of the expected
value of {(|yn

tw| − c)2}. The optimal step-size CMA
(OSCMA) [34] algorithm uses a gradient descent algorithm,
which computes the step size algebraically.The problem in
(12) can also be interpreted as a linear system with a rank-1
constrained solution, which fits the LS-CPD framework in
[35]. LS-CPD solves (11) by relaxing complex parameters
and utilizing a second-order GN algorithm. We compare
with these algorithms in terms of computation time and
accuracy for a simple example.
We consider an autoregressive model of degree L = 10

with uniformly distributed coefficients between zero and
one, sample length K = 300, and c = 1. We add scaled
Gaussian noise to the measurements to obtain a particular
signal-to-noise ratio (SNR). We run 50 experiments starting

TABLE I
The computational complexity of the cGN algorithm

Calls per iteration Complexity

Objective function 1 O (3N log(N) +N)
Gradient 1 O (4N log(N) + 2N)
Gramian-vector itCG O (8N log(N) + 4N)
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from the algebraic solution [35] for the SNR between 0-35
(dB). Fig. 2(a) shows the median CPU time in seconds.
TeMPO is faster than ACMA, OS-CMA and LS-CPD for
SNR > 10(dB) by exploiting the structure of the data. Fig.
2(b) shows the median relative error on w. Clearly, TeMPO
obtains similar accuracy as LS-CPD and OS-CMA, which
are more accurate than ACMA.

VII. Conclusion and Further Work
We introduced the TeMPO framework for MPO. We

demonstrated the efficiency of TeMPO for multivariate
polynomials represented by symmetric CPD-structured
tensors. We illustrated the efficiency of TeMPO with a
blind deconvolution problem and showed that it outper-
forms state-of-the-art algorithms in computation time
and achieves similar accuracy. In future work, we will
investigate LMRA, HT and TT structured tensors. We will
apply TeMPO to a range of problems in signal processing,
machine learning, and data analysis.
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