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ABSTRACT

Data clustering is a key problem in data science and ma-
chine learning. In this paper, we consider orthogonal non-
negative matrix factorization (ONMF) for scaled data clus-
tering. The non-convex orthogonality constraint of ONMF
raises a great challenge from an optimization viewpoint. We
study a convex-constrained transformation of ONMEF that al-
lows us to control the approximation accuracy and problem
difficulty through a parameter. We then apply a homotopy
strategy in which we trace the solution path of a sequence of
the aforementioned transformed problems, gradually moving
from easy problems to near-ONMF problems. Intuitively, do-
ing so may allow us to avoid local minima. Numerical results
show that our homotopy method yields competitive clustering
performance in synthetic data experiments and in a real-data
hyperspectral clustering experiment.

Index Terms— clustering, orthogonal non-negative ma-
trix factorization, homotopy optimization

1. INTRODUCTION

Clustering data without supervision stands as a key problem
in data science and machine learning [1,2]. In document clus-
tering, documents can be classified into different topics [3];
in remote sensing, the pixels of a hyperspectral image can be
identified as different materials [4]. Given a corpus of non-
negative data points z; € Rf ,t = 1,..., N, clustering is
to group them into R < N clusters, with high intra-cluster
similarity and low inter-cluster similarity. Let u, € Rf ,
r = 1,..., R, be the centroids of the R clusters. The most
widely-used clustering method, K -means clustering [5], aims
to find, for each z;, a cluster index I; € {1,..., R} such that

zZ; = uy,. (D)

K-means clustering also aims at finding the centroids w,.’s
together with the cluster assignments /;’s.

In this paper, we are interested in a scaled variant of K-
means clustering. We want to have

z; & aguy,, (2)
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for some scaling «¢; > 0. This is motivated by the fact that,
in many applications, the collected data can be scaled, such
as pixels affected by illumination conditions in imaging clus-
tering, word statistics influenced by the document length in
document clustering, etc. Clustering scaled data can be for-
mulated as an orthogonal non-negative matrix factorization
(ONMF) problem [3], as will be shown in this paper.

In this paper, we are interested in developing an efficient
optimization method for tackling ONME. This is a problem
that has received much interest in signal processing, data sci-
ence, optimization, machine learning, and related areas. The
main challenge of ONMF lies in the non-convex orthogonal-
ity constraint. Many methods have been proposed to find an
approximate solution of ONMF, such as: (1) the multiplica-
tive update (MU) extended from classical non-negative ma-
trix factorization (NMF) [6], wherein the orthogonality con-
straint is either penalized [3, 7] or implicitly addressed by
using the gradient component residing in the tangent space
of the Stiefel manifold [8]; (2) manifold algorithms, which
penalize the non-negative constraint and use manifold algo-
rithms for handling the orthogonality constraint [9]; (3) di-
rect non-convex methods, such as the non-convex projected
gradient method [4], block coordinate descent method [10]
and non-convex penalty method [11]; (4) the e-net approxi-
mation method [12], which randomly draws a large number
of candidate solutions to form an e-net of the feasible region.
The e-net approximation method is the only one that can pro-
vide global approximation guarantee, but it suffers from high
computational complexity. The other methods are computa-
tionally more efficient and are usually considered in practice.
Also, they can yield reasonable performance in practice.

Our method for tackling ONMF contains several ingre-
dients: a careful reformulation of ONMF, a homotopy opti-
mization method and an efficient first-order algorithm. Our
method is a non-convex method, but the use of homotopy op-
timization makes a difference. The reformulation turns the
ONMF problem into a convex-constrained one, and there is
a parameter that controls the balance of approximation accu-
racy and problem difficulty. The homotopy method works by
progressively changing the parameter such that, the reformu-
lated problem is gradually handled from an easy (convex) but
coarse approximation of ONMF to a hard but accurate ap-
proximation of ONMEF. In this process, tracking the solution
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path may give us a better chance to avoid bad local minima,
as our empirical experience suggests. For more background
of homotopy optimization, please refer to [13,14] and the ref-
erences therein. The proposed homotopy method is demon-
strated to match or outperform many existing ONMF algo-
rithms on both synthetic data experiments and a real data ex-
periment in the application of hyperspectral clustering.

2. ONMF AS SCALED K-MEANS CLUSTERING

Consider the scaled clustering model (2). We argue that the
scaled clustering problem can be formulated as an ONMF
problem. Re-express (2) as

Z~UX,
where Z = [2z1,...,2n], U = [uq,...,ug),
X:[alell,...,aNegN], 3)

e; € R is the unit vector with the ith entry being 1 and
the other entries 0. Since each column x; of X has only
one non-zero element, the rows st"s of X are orthogonal,
1.e., d:fi'l = 0 for » # [. This motivates us to consider
the following ONMF formulation [3] for finding the cluster
centroid U and the clustering indicator matrix X:

min 1z -UX|3%
UeRMXR X cRRXN @)

st. U>0, XXT =1, X>0.

One can show that the constraint X X7 = I, X > 0is
equivalent to (3) with Zi:li:r a? = 1, and we can assume
> l=r a? = 1 without loss of generality.

ONMEF as an equivalent formulation of the scaled cluster-
ing problem was discussed in the literature [3,4]. Curiously,

a direct explanation such as the one above was not seen.

3. OUR METHOD

The ONMF problem (4) is difficult mainly because the or-
thogonality constraint X X7 = I is non-convex and on man-
ifold. The method to be presented seeks to use a careful re-
formulation to tackle the issue.

3.1. Reformulation

To start with, observe that, given any feasible X of prob-
lem (4), the optimal solution to problem (4) with respect to
UisU = ZXT when Z > 0. By putting this U into (4),
the ONMF problem (4) is simplified to

min f(X) £ZXT)3 st XXT=1I,X>0. (5
To facilitate our subsequent development, let us re-express
problem (5) as

min f(X) + Lgaxn (X)), (6)

where O 2 {X | X XT =TI} and

0, ifX>0

400, otherwise.

lRfXN(X) = {

Next, we consider the orthogonality constraint X € O.
As a folklore result, we have the following equivalence:

XeOos{X|XeS,|@|a=1,r=1,...,R}, (7

where S = { X ||| X||2 < 1}, and || X ||2 £ Tmax(X) denotes
the spectral norm of X, with 0,5 (X) being the largest sin-
gular value of X. In the Appendix, we provide the proof
of (7). Taking insight from (7), we propose to approximate
problem (6) by

win £(X) + Ly (X) = M| X ®)
for some M. Intuitively, the penalty term —A|| X ||% with a
large A > 0 promotes large row length ||&,||3 for all r; on the
other hand, one can show that the constraint X € S restricts
|&.]|3 < 1 for all 7. As a result, by applying a sufficiently
large A > 0, the optimal solution to problem (8) should satisfy
|&,||3 = 1 for all r. This idea is inspired by our recent work
on binary optimization [15]; here, we extend the idea to deal
with the orthogonality constraint.

3.2. Homotopy Optimization

Problem (8) admits a convex constraint, but it is still non-
convex for a general A. This motivates us to consider the
following homotopy optimization method. Note that f(X)
is p-weakly convex [16] for p > 202 (Z); thatis, f(X) +
2| X||% is convex. Thus, for A = —p/2, problem (8) is a
convex approximation of problem (6), an “easy” problem; for
alarge A\ > 0, problem (8) should approach the original prob-
lem (6). Homotopy optimization takes the following strategy,
also shown in Algorithm 1: Suppose A is gradually changed
from A\ = —p/2 to a large A > 0. The landscape of prob-
lem (8) should slightly change between two successive \’s.
Starting from a small A\; = —p/2, we solve problem (8),
which is convex, and obtain an optimal solution X L. next, A\
is slightly increased to Ao and we expect that a solver warm-
started by X! should get to an optimal solution X ? to the
new problem. By continuing the above process and tracing
the solution path of X* for increasing )\, we argue that the
homotopy method may stand a good chance to avoid bad lo-
cal minima and to find a globally optimal solution.

3.3. An Approximation

We need a solver for handling problem (8) for a fixed A. In
this regard, the non-smooth indicator function 1gnxn (X)
hinders efficient algorithms. We approximate it by the smooth
square distance function

L (X) & - dist(X, RY>N)2, ©)
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Algorithm 1 A homotopy strategy for tackling problem (8)

1: given initialization X 0\ = —p/2, iteration index k =0.
2: repeat

3: k=k+1

4 warm-start from X *~!, run a solver to compute a so-

lution to problem (8), set the solution as X*
5:  set A\i41 as an increased version of Ag
6: until some stopping criterion is satisfied.

for some 11 > 0, where

dist(X, RNy 2 min | X = Y|[p = [ min(X,0)]|r
YERJF/ XN

is the distance function from a point X to the set Rf *N This
leads to an approximation of problem (8)

. B 2
)rélégG,L(X) M X |, (10)

where G,(X) £ f(X) + pdist(X,RYY)2. With (9), the
approximation errors between problems (10) and (8), and be-
tween problem (6) and its approximation

min Gu(X) (11)

can be small given a large p. Consider the following fact, of
which the proof is omitted here due to the limited space and
will be provided in the extended version of this work.

Fact 1 Any optimal solution X* to problem (10) or (11) is
O(1//I) non-negative, i.e., || min(X*,0)||7. = O(1/p).

Previously, we provide the intuition why problem (8) may
work. But we did not provide theoretical justification. As it
turns out, the technical difficulty is also 1RJM><N(X ). With

+

the approximation in (9), we can analyze the effect of A on
enforcing orthogonality in problem (10).

Theorem 1 Let L be a Lipschitz constant of G,,(X) on S,
which must exist. For any A\ > L, any globally optimal so-
lution to problem (10) is also a globally optimal solution to
problem (11). Also, any globally optimal solution to prob-
lem (11) is a globally optimal solution to problem (10).

Theorem 1 is an extension of [15, Theorem 1], and we omit
the details here due to space limitation.

3.4. An Efficient First-Order Algorithm

We complete our method by presenting a solver for tackling
problem (10) for a fixed \. We choose the majorization-
minimization (MM) method. By utilizing the inequality
—[|1 X% < —|| X||% —2(X, X) for any X, we can construct
a surrogate problem of problem (10) at the (k + 1)th MM
iteration as follows:

Xk“earg;(né%H,\,u(X;Xk) 26 (X)—2\X*X), (12)

where X* is the solution to the kth MM iteration. Then,
we can apply the projected gradient method to handle prob-
lem (12); there, the key operation is the projection onto S,
which can be obtained by singular value thresholding, i.e.,
s(X) £ argminyes |V — X[|2 = Wmin(Z,1)Q7,
where X = WXQT is the singular value decomposition
(SVD) of X.

In fact, what we adopt is an advanced version of MM,
namely, gradient-extrapolated MM (GEMM) [15]. In GEMM,
the MM subproblem (12) is updated by a one-step accelerated
projected gradient (APG). GEMM is computationally light
due to the inexact APG update. Also, GEMM is guaranteed
to converge to a stationary point of problem (10) [15].

Finally, we assemble all the building blocks and show the
pseudo code of the overall algorithm in Algorithm 2: 1/}, is
the step size; A and p are updated by the subgradient update
rule in [14]. Note that we also progressively increase the value
of the non-negativity penalty parameter p.

Algorithm 2 Homotopy Method and GEMM for ONMF

I: given initialization Ay = —p/2, p1, X°, 6o = 0, c», ¢,
ﬁO = 2Uglax(z)’ kE=0.
2: repeat
33 k=k+1
4 Br = Bo+2uk ) A
5. j =0, warm-start with X! = X0 = Xk-1
6 repeat
7 j=j+1
2

8: a; = 5j7(51~71’ §; = @

. N . ‘-
9: VIi=XJ+ OLj(XJ _ nyl)

10: Xt = Tg(VI — 1/ VHy . (V7; X7))
11:  until convergence, set the output X7+! as X*
122 A= N1 + 2= (R - | XF)3)

130 pg = pe—1+ \/k“ﬁ” min(X*,0)[/%
14: until convergence.

4. SIMULATION RESULTS AND CONCLUSION

In this section, we examine the performance of our proposed
homotopy method on both synthetic and real-world exper-
iments, particularly, under the application of hyperspectral
clustering. For benchmarking, we consider K-means clus-
tering and five state-of-the-art ONMF algorithms, namely,
DTPP [3], ONMF-S [8], HALS [10], ONPMF [4] and
NCP [11]. The first two methods are variants of the NMF
multiplicative update (MU) [6], while the last three methods
are direct non-convex methods. We specifically choose the
initialization strategies suitable for each algorithm. K'-means
clustering is initialized by randomly selected R data points as
centroids; DTPP, ONMEF-S, HALS and NCP by the Nonnega-
tive Double Singular Value Decomposition (NNDSVD) [17];

1087



ONPMF and our homotopy method by SVD initialization [4].
We evaluate the performance by clustering accuracy, i.e., the
proportion of correctly clustered data points.

In Algorithm 2, we set Ay = 1, u; = 0.1, ¢y, = 1.5 and
¢, = 1.2. Within each iteration £, we run GEMM until the
distance of successive iterates satisfies || X711 — X7||p <
10~° or the maximum iteration number 10,000 is reached.
The whole homotopy algorithm terminates when the distance
of successive iterates satisfies | X*T1 — X*||z < 1076 or the
maximum iteration number 40, 000 is reached.

4.1. Synthetic Data Experiments

In synthetic data experiments, we generate X by (3) where «;
is randomly generated over [0.1, 1]. We consider imbalanced
cluster sizes, i.e., each row &; in X has 500 — 50(7 — 1) non-
zero elements, ¢ = 1,..., R. The factor U is generated in two
ways: 1) U € R3*!%, with each element u; ; independent
and identically distributed (i.i.d.) and uniformly distributed

n [0,1]; 2) randomly selected R = 5 hyperspectral signa-
ture vectors of length M = 224 from a subset of the USGS
library [18]. Note that the first simulates a generic instance,
while the second a hyperspectral clustering problem. Then,
the data matrix Z is generated by Z = max{U X + N, 0},
where each element n; ; of N is i.i.d. white Gaussian, specif-
ically, n; ; ~ N(0,€?). A number of 10 Monte-Carlo trials
were used to assess the performance of the various clustering
algorithms.

Fig. 1 shows the clustering accuracies under different
noise power levels. It is seen that the ONMF-based methods
achieve much higher clustering accuracies than K-means
clustering when the data points are scaled. In Fig. 1(a),
except for K-means clustering, the other methods achieve
comparably good clustering performance, with DTPP and
ONMEF-S performing slightly worse at moderate noise levels
and with HALS performing slightly worse at low noise levels.
In Fig. 1(b), it is seen that the proposed homotopy method
achieves a higher clustering accuracy than the other methods.
For the tested simulations in Fig. 1, the runtime of the pro-
posed homotopy method is comparable to those of NCP and
ONPMF; the other methods cost less time.

4.2. A Real Data Experiment: Hyperspectral Clustering

We consider a clustering problem arising from hyperspectral
imaging. A hyperspectral image contains a collection of im-
ages taken at different wavelengths and at the same scene.
Different materials admit different spectral responses. Hyper-
spectral clustering is to identify the main material contained
in each pixel.

The real data we test is the HYDIC Urban hyperspectral
image [19,20], which contains M = 162 clean spectral bands
and N = 307 x 307 pixels. There are mainly six materi-
als in the data: roof, dirt, metal, asphalt road, grass and tree;
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Fig. 1: Accuracy results for different ONMF algorithms.

the labels are accessed from [20]. Fig. 2 shows the cluster-
ing results obtained by different algorithms together with the
clustering accuracies; different colors are used to represent
different materials. It is seen that ONPMF and our homotopy
method are the best two in this task; both can extract most of
the materials correctly, with the homotopy method achieving
a higher clustering accuracy. ONPMF performs not so well
in distinguishing road and dirt, while our homotopy method
is less satisfactory in discovering metal.

In this work, we have proposed a homotopy optimization
method for handling the ONMF problem in data clustering.
The homotopy solution-path tracking idea yields promising
results, as our numerical experiments showed.
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6. APPENDIX

If XX7 = I, then we have 0,.(X) = 1 for all r, where
0,(X) denotes the rth largest singular value of matrix X;
and ||@,|]2 = 1 for all r. Thus, the right-hand side (RHS)
of (7) holds. Conversely, if the RHS of (7) holds, we have
IX|3 = S, 1213 = R Also, note that | X3 =
S 02(X). As || X[z < 1 implies o,.(X) < 1 for all
r, we have 0,.(X) = 1 for all r, which arrives at the orthogo-
nality of X on the left-hand side of (7).
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