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ABSTRACT
Data clustering is a key problem in data science and ma-

chine learning. In this paper, we consider orthogonal non-
negative matrix factorization (ONMF) for scaled data clus-
tering. The non-convex orthogonality constraint of ONMF
raises a great challenge from an optimization viewpoint. We
study a convex-constrained transformation of ONMF that al-
lows us to control the approximation accuracy and problem
difficulty through a parameter. We then apply a homotopy
strategy in which we trace the solution path of a sequence of
the aforementioned transformed problems, gradually moving
from easy problems to near-ONMF problems. Intuitively, do-
ing so may allow us to avoid local minima. Numerical results
show that our homotopy method yields competitive clustering
performance in synthetic data experiments and in a real-data
hyperspectral clustering experiment.

Index Terms— clustering, orthogonal non-negative ma-
trix factorization, homotopy optimization

1. INTRODUCTION

Clustering data without supervision stands as a key problem
in data science and machine learning [1,2]. In document clus-
tering, documents can be classified into different topics [3];
in remote sensing, the pixels of a hyperspectral image can be
identified as different materials [4]. Given a corpus of non-
negative data points zi ∈ RM+ , i = 1, . . . , N , clustering is
to group them into R < N clusters, with high intra-cluster
similarity and low inter-cluster similarity. Let ur ∈ RM+ ,
r = 1, . . . , R, be the centroids of the R clusters. The most
widely-used clustering method, K-means clustering [5], aims
to find, for each zi, a cluster index li ∈ {1, . . . , R} such that

zi ≈ uli . (1)

K-means clustering also aims at finding the centroids ur’s
together with the cluster assignments li’s.

In this paper, we are interested in a scaled variant of K-
means clustering. We want to have

zi ≈ αiuli , (2)

This work was supported by a General Research Fund (GRF) of Hong
Kong Research Grant Council (RGC), under Project ID CUHK 14208819.

for some scaling αi ≥ 0. This is motivated by the fact that,
in many applications, the collected data can be scaled, such
as pixels affected by illumination conditions in imaging clus-
tering, word statistics influenced by the document length in
document clustering, etc. Clustering scaled data can be for-
mulated as an orthogonal non-negative matrix factorization
(ONMF) problem [3], as will be shown in this paper.

In this paper, we are interested in developing an efficient
optimization method for tackling ONMF. This is a problem
that has received much interest in signal processing, data sci-
ence, optimization, machine learning, and related areas. The
main challenge of ONMF lies in the non-convex orthogonal-
ity constraint. Many methods have been proposed to find an
approximate solution of ONMF, such as: (1) the multiplica-
tive update (MU) extended from classical non-negative ma-
trix factorization (NMF) [6], wherein the orthogonality con-
straint is either penalized [3, 7] or implicitly addressed by
using the gradient component residing in the tangent space
of the Stiefel manifold [8]; (2) manifold algorithms, which
penalize the non-negative constraint and use manifold algo-
rithms for handling the orthogonality constraint [9]; (3) di-
rect non-convex methods, such as the non-convex projected
gradient method [4], block coordinate descent method [10]
and non-convex penalty method [11]; (4) the ε-net approxi-
mation method [12], which randomly draws a large number
of candidate solutions to form an ε-net of the feasible region.
The ε-net approximation method is the only one that can pro-
vide global approximation guarantee, but it suffers from high
computational complexity. The other methods are computa-
tionally more efficient and are usually considered in practice.
Also, they can yield reasonable performance in practice.

Our method for tackling ONMF contains several ingre-
dients: a careful reformulation of ONMF, a homotopy opti-
mization method and an efficient first-order algorithm. Our
method is a non-convex method, but the use of homotopy op-
timization makes a difference. The reformulation turns the
ONMF problem into a convex-constrained one, and there is
a parameter that controls the balance of approximation accu-
racy and problem difficulty. The homotopy method works by
progressively changing the parameter such that, the reformu-
lated problem is gradually handled from an easy (convex) but
coarse approximation of ONMF to a hard but accurate ap-
proximation of ONMF. In this process, tracking the solution
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path may give us a better chance to avoid bad local minima,
as our empirical experience suggests. For more background
of homotopy optimization, please refer to [13,14] and the ref-
erences therein. The proposed homotopy method is demon-
strated to match or outperform many existing ONMF algo-
rithms on both synthetic data experiments and a real data ex-
periment in the application of hyperspectral clustering.

2. ONMF AS SCALED K-MEANS CLUSTERING

Consider the scaled clustering model (2). We argue that the
scaled clustering problem can be formulated as an ONMF
problem. Re-express (2) as

Z ≈ UX,

where Z = [z1, . . . ,zN ], U = [u1, . . . ,uR],

X = [α1el1 , . . . , αNelN ], (3)

ei ∈ RR is the unit vector with the ith entry being 1 and
the other entries 0. Since each column xi of X has only
one non-zero element, the rows x̌Tr ’s of X are orthogonal,
i.e., x̌Tr x̌l = 0 for r 6= l. This motivates us to consider
the following ONMF formulation [3] for finding the cluster
centroid U and the clustering indicator matrix X:

min
U∈RM×R,X∈RR×N

‖Z −UX‖2F

s.t. U ≥ 0, XXT = I, X ≥ 0.
(4)

One can show that the constraint XXT = I, X ≥ 0 is
equivalent to (3) with

∑
i:li=r

α2
i = 1, and we can assume∑

i:li=r
α2
i = 1 without loss of generality.

ONMF as an equivalent formulation of the scaled cluster-
ing problem was discussed in the literature [3, 4]. Curiously,
a direct explanation such as the one above was not seen.

3. OUR METHOD

The ONMF problem (4) is difficult mainly because the or-
thogonality constraint XXT = I is non-convex and on man-
ifold. The method to be presented seeks to use a careful re-
formulation to tackle the issue.

3.1. Reformulation

To start with, observe that, given any feasible X of prob-
lem (4), the optimal solution to problem (4) with respect to
U is U = ZXT when Z ≥ 0. By putting this U into (4),
the ONMF problem (4) is simplified to

min
X

f(X) , −‖ZXT ‖2F s.t. XXT = I, X ≥ 0. (5)

To facilitate our subsequent development, let us re-express
problem (5) as

min
X∈O

f(X) + 1RM×N
+

(X), (6)

where O , {X |XXT = I} and

1RM×N
+

(X) =

{
0, if X ≥ 0

+∞, otherwise.

Next, we consider the orthogonality constraint X ∈ O.
As a folklore result, we have the following equivalence:

X ∈ O ⇔ {X |X ∈ S, ‖x̌r‖2 = 1, r = 1, . . . , R}, (7)

where S , {X|‖X‖2 ≤ 1}, and ‖X‖2 , σmax(X) denotes
the spectral norm of X , with σmax(X) being the largest sin-
gular value of X . In the Appendix, we provide the proof
of (7). Taking insight from (7), we propose to approximate
problem (6) by

min
X∈S

f(X) + 1RM×N
+

(X)− λ‖X‖2F (8)

for some λ. Intuitively, the penalty term −λ‖X‖2F with a
large λ > 0 promotes large row length ‖x̌r‖22 for all r; on the
other hand, one can show that the constraint X ∈ S restricts
‖x̌r‖22 ≤ 1 for all r. As a result, by applying a sufficiently
large λ > 0, the optimal solution to problem (8) should satisfy
‖x̌r‖22 = 1 for all r. This idea is inspired by our recent work
on binary optimization [15]; here, we extend the idea to deal
with the orthogonality constraint.

3.2. Homotopy Optimization

Problem (8) admits a convex constraint, but it is still non-
convex for a general λ. This motivates us to consider the
following homotopy optimization method. Note that f(X)
is ρ-weakly convex [16] for ρ ≥ 2σ2

max(Z); that is, f(X) +
ρ
2‖X‖

2
F is convex. Thus, for λ = −ρ/2, problem (8) is a

convex approximation of problem (6), an “easy” problem; for
a large λ > 0, problem (8) should approach the original prob-
lem (6). Homotopy optimization takes the following strategy,
also shown in Algorithm 1: Suppose λ is gradually changed
from λ = −ρ/2 to a large λ > 0. The landscape of prob-
lem (8) should slightly change between two successive λ’s.
Starting from a small λ1 = −ρ/2, we solve problem (8),
which is convex, and obtain an optimal solution X1; next, λ1
is slightly increased to λ2 and we expect that a solver warm-
started by X1 should get to an optimal solution X2 to the
new problem. By continuing the above process and tracing
the solution path of Xk for increasing λ, we argue that the
homotopy method may stand a good chance to avoid bad lo-
cal minima and to find a globally optimal solution.

3.3. An Approximation

We need a solver for handling problem (8) for a fixed λ. In
this regard, the non-smooth indicator function 1RM×N

+
(X)

hinders efficient algorithms. We approximate it by the smooth
square distance function

1RM×N
+

(X) ≈ µ · dist(X,RM×N+ )2, (9)
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Algorithm 1 A homotopy strategy for tackling problem (8)

1: given initialization X0, λ1 =−ρ/2, iteration index k =0.
2: repeat
3: k = k + 1
4: warm-start from Xk−1, run a solver to compute a so-

lution to problem (8), set the solution as Xk

5: set λk+1 as an increased version of λk
6: until some stopping criterion is satisfied.

for some µ > 0, where

dist(X,RM×N+ ) , min
Y ∈RM×N

+

‖X − Y ‖F = ‖min(X,0)‖F

is the distance function from a point X to the set RM×N+ . This
leads to an approximation of problem (8)

min
X∈S

Gµ(X)− λ‖X‖2F , (10)

where Gµ(X) , f(X) + µdist(X,RM×N+ )2. With (9), the
approximation errors between problems (10) and (8), and be-
tween problem (6) and its approximation

min
X∈O

Gµ(X) (11)

can be small given a large µ. Consider the following fact, of
which the proof is omitted here due to the limited space and
will be provided in the extended version of this work.

Fact 1 Any optimal solution X? to problem (10) or (11) is
O(1/

√
µ) non-negative, i.e., ‖min(X?, 0)‖2F = O(1/µ).

Previously, we provide the intuition why problem (8) may
work. But we did not provide theoretical justification. As it
turns out, the technical difficulty is also 1RM×N

+
(X). With

the approximation in (9), we can analyze the effect of λ on
enforcing orthogonality in problem (10).

Theorem 1 Let L be a Lipschitz constant of Gµ(X) on S,
which must exist. For any λ > L, any globally optimal so-
lution to problem (10) is also a globally optimal solution to
problem (11). Also, any globally optimal solution to prob-
lem (11) is a globally optimal solution to problem (10).

Theorem 1 is an extension of [15, Theorem 1], and we omit
the details here due to space limitation.

3.4. An Efficient First-Order Algorithm

We complete our method by presenting a solver for tackling
problem (10) for a fixed λ. We choose the majorization-
minimization (MM) method. By utilizing the inequality
−‖X‖2F ≤ −‖X̄‖2F −2〈X̄,X〉 for any X̄ , we can construct
a surrogate problem of problem (10) at the (k + 1)th MM
iteration as follows:

Xk+1∈argmin
X∈S

Hλ,µ(X;Xk),Gµ(X)−2λ〈Xk,X〉, (12)

where Xk is the solution to the kth MM iteration. Then,
we can apply the projected gradient method to handle prob-
lem (12); there, the key operation is the projection onto S,
which can be obtained by singular value thresholding, i.e.,
ΠS(X) , arg minY ∈S ‖Y − X‖2F = W min(Σ, 1)QT ,
where X = WΣQT is the singular value decomposition
(SVD) of X .

In fact, what we adopt is an advanced version of MM,
namely, gradient-extrapolated MM (GEMM) [15]. In GEMM,
the MM subproblem (12) is updated by a one-step accelerated
projected gradient (APG). GEMM is computationally light
due to the inexact APG update. Also, GEMM is guaranteed
to converge to a stationary point of problem (10) [15].

Finally, we assemble all the building blocks and show the
pseudo code of the overall algorithm in Algorithm 2: 1/βk is
the step size; λ and µ are updated by the subgradient update
rule in [14]. Note that we also progressively increase the value
of the non-negativity penalty parameter µ.

Algorithm 2 Homotopy Method and GEMM for ONMF

1: given initialization λ1 = −ρ/2, µ1, X0, δ0 = 0, cλ, cµ,
β0 = 2σ2

max(Z), k = 0.
2: repeat
3: k = k + 1
4: βk = β0 + 2µk
5: j = 0, warm-start with X̂1 = X̂0 = Xk−1

6: repeat
7: j = j + 1

8: αj =
δj−1−1
δj

, δj =

√
1+4δ2j−1

2

9: V j = X̂j + αj(X̂
j − X̂j−1)

10: X̂j+1 = ΠS(V j − 1/βk∇Hλ,µ(V j ; X̂j))

11: until convergence, set the output X̂j+1 as Xk

12: λk = λk−1 + cλ√
k+1

(R− ‖Xk‖2F )

13: µk = µk−1 +
cµ√
k+1
‖min(Xk, 0)‖2F

14: until convergence.

4. SIMULATION RESULTS AND CONCLUSION

In this section, we examine the performance of our proposed
homotopy method on both synthetic and real-world exper-
iments, particularly, under the application of hyperspectral
clustering. For benchmarking, we consider K-means clus-
tering and five state-of-the-art ONMF algorithms, namely,
DTPP [3], ONMF-S [8], HALS [10], ONPMF [4] and
NCP [11]. The first two methods are variants of the NMF
multiplicative update (MU) [6], while the last three methods
are direct non-convex methods. We specifically choose the
initialization strategies suitable for each algorithm. K-means
clustering is initialized by randomly selected R data points as
centroids; DTPP, ONMF-S, HALS and NCP by the Nonnega-
tive Double Singular Value Decomposition (NNDSVD) [17];
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ONPMF and our homotopy method by SVD initialization [4].
We evaluate the performance by clustering accuracy, i.e., the
proportion of correctly clustered data points.

In Algorithm 2, we set λ1 = 1, µ1 = 0.1, cλ = 1.5 and
cµ = 1.2. Within each iteration k, we run GEMM until the
distance of successive iterates satisfies ‖X̂j+1 − X̂j‖F ≤
10−5 or the maximum iteration number 10, 000 is reached.
The whole homotopy algorithm terminates when the distance
of successive iterates satisfies ‖Xk+1−Xk‖F ≤ 10−6 or the
maximum iteration number 40, 000 is reached.

4.1. Synthetic Data Experiments

In synthetic data experiments, we generate X by (3) where αi
is randomly generated over [0.1, 1]. We consider imbalanced
cluster sizes, i.e., each row x̌i in X has 500− 50(i− 1) non-
zero elements, i = 1, . . . , R. The factor U is generated in two
ways: 1) U ∈ R300×10

+ , with each element ui,j independent
and identically distributed (i.i.d.) and uniformly distributed
on [0, 1]; 2) randomly selected R = 5 hyperspectral signa-
ture vectors of length M = 224 from a subset of the USGS
library [18]. Note that the first simulates a generic instance,
while the second a hyperspectral clustering problem. Then,
the data matrix Z is generated by Z = max{UX + N ,0},
where each element ni,j of N is i.i.d. white Gaussian, specif-
ically, ni,j ∼ N (0, ε2). A number of 10 Monte-Carlo trials
were used to assess the performance of the various clustering
algorithms.

Fig. 1 shows the clustering accuracies under different
noise power levels. It is seen that the ONMF-based methods
achieve much higher clustering accuracies than K-means
clustering when the data points are scaled. In Fig. 1(a),
except for K-means clustering, the other methods achieve
comparably good clustering performance, with DTPP and
ONMF-S performing slightly worse at moderate noise levels
and with HALS performing slightly worse at low noise levels.
In Fig. 1(b), it is seen that the proposed homotopy method
achieves a higher clustering accuracy than the other methods.
For the tested simulations in Fig. 1, the runtime of the pro-
posed homotopy method is comparable to those of NCP and
ONPMF; the other methods cost less time.

4.2. A Real Data Experiment: Hyperspectral Clustering

We consider a clustering problem arising from hyperspectral
imaging. A hyperspectral image contains a collection of im-
ages taken at different wavelengths and at the same scene.
Different materials admit different spectral responses. Hyper-
spectral clustering is to identify the main material contained
in each pixel.

The real data we test is the HYDIC Urban hyperspectral
image [19,20], which containsM = 162 clean spectral bands
and N = 307 × 307 pixels. There are mainly six materi-
als in the data: roof, dirt, metal, asphalt road, grass and tree;
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(a) Randomly generated U from [0, 1]300×10.
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(b) Hyperspectral U from the USGS library.

Fig. 1: Accuracy results for different ONMF algorithms.

the labels are accessed from [20]. Fig. 2 shows the cluster-
ing results obtained by different algorithms together with the
clustering accuracies; different colors are used to represent
different materials. It is seen that ONPMF and our homotopy
method are the best two in this task; both can extract most of
the materials correctly, with the homotopy method achieving
a higher clustering accuracy. ONPMF performs not so well
in distinguishing road and dirt, while our homotopy method
is less satisfactory in discovering metal.

In this work, we have proposed a homotopy optimization
method for handling the ONMF problem in data clustering.
The homotopy solution-path tracking idea yields promising
results, as our numerical experiments showed.
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6. APPENDIX

If XXT = I , then we have σr(X) = 1 for all r, where
σr(X) denotes the rth largest singular value of matrix X;
and ‖x̌r‖2 = 1 for all r. Thus, the right-hand side (RHS)
of (7) holds. Conversely, if the RHS of (7) holds, we have
‖X‖2F =

∑R
r=1 ‖x̌r‖22 = R. Also, note that ‖X‖2F =∑R

r=1 σ
2
r(X). As ‖X‖2 ≤ 1 implies σr(X) ≤ 1 for all

r, we have σr(X) = 1 for all r, which arrives at the orthogo-
nality of X on the left-hand side of (7).
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