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Abstract—Beamforming techniques for hearing aid applica-
tions are often evaluated using behind-the-ear (BTE) devices.
However, the growing number of wearable devices with mi-
crophones has made it possible to consider new geometries
for microphone array beamforming. In this paper, we examine
the effect of array location and geometry on the performance
of binaural minimum power distortionless response (BMPDR)
beamformers. In addition to the classical adaptive BMPDR, we
evaluate the benefit of a recently-proposed method that estimates
the sample covariance matrix using a compact model. Simulation
results show that using a chest-mounted array reduces noise by an
additional 1.3 dB compared to BTE hearing aids. The compact
model method is found to yield higher predicted intelligibility
than adaptive BMPDR beamforming, regardless of the array
geometry.

Index Terms—wearable microphone arrays, binaural beam-
forming, compact model, hearing aids

I. INTRODUCTION

Classical single-channel speech enhancement aims to ex-
ploit time-frequency properties of a signal to reduce its noise
level without introducing excessive distortion in the desired
speech. Using microphone arrays provides information about
the spatial properties of a signal, thus allowing for an ad-
ditional degree of enhancement through spatial filtering or
beamforming [1]. Beamforming can be made binaural by
processing the signals from the microphone array using two
beamformers with outputs for the left and right ears to create
a spatialisation of the output [2]. A widely used beamformer
is the minimum power distortionless response (MPDR) beam-
former which minimises its output power while satisfying a
unity gain constraint in a desired look direction [3], [4]. To
determine the beamformer filter weights, the MPDR beam-
former estimates the spatial coherence of the sound scene at
the microphones of the array through the sample covariance
matrix (SCM). This matrix is often obtained using theoretical
definitions of a spatial coherence function [5]–[7]. When such
definitions cannot be used, e.g. in non-stationary noise, a
common approach is to adaptively estimate the SCM from
the signal samples. The number of estimated matrix elements
grows quadratically with the number of microphones, leading
to slow convergence for large arrays. Rather than estimating
the entire SCM, a model-based estimation was proposed in
[8] which constructs the SCM as the weighted sum of plane-
wave, isotropic noise, and sensor noise terms. The method
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showed promising results with behind-the-ear (BTE) hearing
aids (HAs) in [8].

The growing availability of connected wearables such as
smart watches and glasses has broadened the range of array
geometries to consider when designing beamformers. Many
devices already incorporate microphones for hands-free com-
munication, voice control, or augmented reality [9], making
them natural candidates when creating assisted listening de-
vices [10]. Wearable arrays present the advantage of being
potentially spread over the entire body, whereas classical HAs
restrict microphone placement usually to an area around the
ears. Wearable devices thus benefit from an increased spatial
diversity, and it was found in [11] that an MVDR beamformer
applied to a body-worn array yielded better results than
when applied to an array concentrated at the listener’s ears.
Moreover, the discomfort of HAs has been reported in [12]
to sometimes reduce their adoption; this could be addressed
by creating devices that rely on accessories already worn by
the user, e.g. glasses, hats, jewellery, etc. Additionally, the
design of new forms of assisted listening devices could benefit
special needs users. For example, it was suggested in [13] that
dementia patients could benefit from personalised devices, and
in [14] a speech enhancement system for motor skill impaired
patients was developed using an array mounted on glasses.

Only a few studies have so far explored the combination of
modern beamformers and the varying geometries of wearable
arrays. In [15], a speech acquisition device using speech detec-
tion and an MVDR beamformer was implemented on glasses
only, while the comparison of array locations for beamforming
in [11] was limited to the monaural MVDR beamformer. In
this paper, we are interested in studying the performance of
binaural beamformers using wearable arrays, as this has not
yet been widely examined in the signal processing literature
for the binaural case. We thus explore the performance of
adaptive and compact-model [8] binaural MPDR beamformers
across various wearable array geometries. The paper is struc-
tured as follows: Sec. II provides relevant information on SCM
estimation and binaural beamforming; Sec. III describes the
design and results of simulation experiments; Sec. IV discusses
results; and Sec. V draws conclusions.

II. BACKGROUND

A. Signal model

Given Q source signals arriving at an array of M mi-
crophones, the STFT of the signal observed at the mth
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microphone is given by

ym(k, `) =

Q∑
q=1

hq,m(k)sq(k, `) + vm(k, `) (1)

where ` and k are respectively the time and frequency indices,
sq(k, `) is the qth source signal (target or interferer), hq,m(k)
is the transfer function, assumed stationary, between the qth

source and the mth microphone, and vm(k, `) is sensor noise.
The STFT analysis window is assumed to be large relative
to the impulse response of the hq,m so that the multiplicative
transfer function assumption holds [16], [17]. Stacking micro-
phone signals into a vector form gives (omitting k for clarity)

y(`) =

Q∑
q=1

hqsq(`) + v(`) = Hs(`) + v(`) (2)

where y(`) = [y1(`), . . . , yM (`)]T , with hq and v(`) defined
similarly, s(`) = [s1(`), . . . , sQ(`)]T , and H is a M × S
matrix whose columns contain hq , q = 1, . . . , Q. Separating
H into direct-path, (·)(d), and reverberant, (·)(r), terms gives

y(`) = H(d)s(`) + H(r)s(`) + v(`). (3)

Then, following [8] by assuming sources in the far-field,
obeying W-disjoint orthogonality such that only one source
is dominant in each time-frequency bin [18], and considering
that the sum of all reflections results in a diffuse isotropic
noise field, (3) is rewritten in terms of a signal model

ẏ(`) = a(Ω(`))ṡq(`)(`) + γ(`) + v(`) (4)

where q(`) is the index of the dominant source, ṡq(`)(`), in the
(k, `)th bin as measured at a reference microphone, a(Ω(`))
is the relative transfer function (RTF) relating the reference
microphone to the rest of the array for a source direction-of-
arrival (DOA) Ω(`), and γ(`) is the diffuse isotropic noise.

B. MPDR beamforming
For each k, wm(`) is the beamformer coefficient applied to

the mth microphone, and the beamformer output is

z(`) = wH(`)y(`) (5)

where wH(`) = [w∗
1(`), . . . , w∗

M (`)], with (·)H the Hermitian
transpose. In MPDR beamforming, the weights satisfy

argmin
w(`)

wH(`)Ry(l)w(`) s. t. wH(`)d = 1 (6)

where d is the steering vector and Ry is the covariance matrix
defined as Ry = E[yyH ], with E the expectation operator.
This has a well-known solution given in [19] as

w(`) =
R−1

y (`)d

dHRy(`)d
. (7)

1) Adaptive MPDR beamformer (AMB)
In adaptive MPDR beamforming, the M×M SCM, Ry(`),

can be recursively estimated from samples as

R̂y(`) = αR̂y(`−1) + (1− α)y(`)yH(`) (8)

where α controls the recursive smoothing.

2) Compact model MPDR beamformer (CMMB)
The method in [8] uses the signal model in (4) to calculate

Rẏ(`) as

Rẏ(`) = σa(`)Ra(Ω(`)) + σγ(`)Rγ + σv(`)Rv (9)

where Ω(l) is the DOA of the plane-wave component, and
σa(`), σγ(l), and σv(`) are the power of the plane-wave,
diffuse noise, and sensor noise components, respectively. Thus,
the compact model estimates 4 parameters, found by solving

argmin
Ω(`),σa(`),σγ(`),σv(`)

||R̂y(`)−Rẏ(`)||F (10)

where || · ||F denotes the Frobenius norm.

C. Binaural MPDR beamforming

In binaural MPDR beamforming, two outputs are produced
using two sets of filters, wl(`) and wr(`), designed for each
ear [2], such that (5) and (7) become

z(`) = [wl(`), wr(`)]
Hy(`) (11)

wb(`) =
R−1

y (`)db

dHb Ry(`)db
b ∈ {l, r} (12)

where l and r indicate the left and right devices respectively,
and dl and dr are the steering vectors defined for the left and
right reference microphones. This beamforming can preserve
the spatial cues of the target signal [20].

III. EXPERIMENTS

The performance of binaural MPDR beamforming using
SCMs estimated from the adaptive method of (8) and the
compact-model method of (10) is evaluated for various mi-
crophone array geometries. The steering vectors dl,r are set
to dl,r = al,r(0), where al,r(0) are the RTFs, assumed known,
from left and right reference microphones to the considered
array. The selected reference microphones are located just
outside the ear-canals of a mannequin, referred to as left and
right ‘in-ear’ microphones. Diagonal loading is applied to the
covariance matrices to limit their condition numbers to ≤ 100
in order to improve the robustness of the beamformers [8],
[21]. The time constant in (8) is chosen empirically to be
50 ms, and (10) is solved as the best ordinary least square
solution from among the 24 plane-wave DOAs as will be
presented in Sec. III-B. The system operates at a sampling rate
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Figure 1: (a) Scenario setup. (b): Array geometries, clockwise
from top left: chest, glasses, BTE hearing aids, baseball cap.
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Figure 2: Comparison of MPDR beamformers using adaptive and compact-model SCM estimation for various array geometries.
(a), (b): For SNRbabble = 20 dB and varying SIR. (c), (d): For SIR = 20 dB and varying SNRbabble.

of 20 kHz, and the STFT uses Hamming-windowed frames of
16 ms with 50 % overlap.

A. Experimental setup
The simulation experiments follow a competing dialogue

scenario pictured in Fig. 1(a): a target male speaker is
presented in front of the listener, while female and male
interfering speakers are located on their left, at 45° and 90° re-
spectively. The interfering speakers have equal signal level and
are not simultaneously active. Target and interfering speakers
can be, however, simultaneously active. White Gaussian sensor
noise is added with reverberant target signal-to-sensor-noise
ratio (SNRsensor) fixed at 20 dB. A diffuse babble noise field
is simulated by generating babble noise originating from 24
equally spaced azimuth angles, ensuring equal direct-path
power from all directions. The speech and noise levels are
computed respectively as the mean active level [22] and mean
power at the two reference microphones.

B. Data and body-related transfer functions (BRTF)
The source speech signals are obtained through concatena-

tion of anechoic speech from the TIMIT database [23]. The
transfer functions used to generate microphone signals and to
obtain steering vectors are the body-related transfer functions
(BRTF) presented in [11]. The database contains BRTFs for
80 omnidirectional microphones mounted on a mannequin, as
well as for BTE hearing aids and various accessories. The
BRTFs are available for 24 source azimuth angles, with the
sources placed 2 m away from the microphones. The measure-
ments were obtained using a linear sweep in an acoustically
treated room with reverberation time of approximately 200 ms,
and are sampled with 24 bits at a rate of 48 kHz.

C. Performance measures

To compare the performance of the beamformers for the
noise reduction task, the frequency-weighted segmental SNR
(fwSNRseg) is computed in frames of length L, such that in
a given frame

fwSNRsegb =∆ 10 log10

( L∑
i=1

s̃∗b(i)
2

L∑
i=1

(z̃b(i)− s̃∗b(i))2

)
dB (13)

where b ∈ {l, r}, i represents the sample index, s̃∗b(i) is
the frequency-weighted direct-path target speech signal at a
reference microphone, and z̃b(i) is the frequency-weighted
beamformer output for the corresponding reference micro-
phone. The fwSNRseg is then computed as the mean over
all frames using the A-weighting provided in Voicebox [24].

The MBSTOI measure [25] is used to quantify the perfor-
mance in terms of predicted intelligibility, as it has been shown
to predict perceived binaural intelligibility. In the MBSTOI
computation, the reference signals are the direct-path target
speech signals recorded at the in-ear microphones, and the
noisy signals are the outputs of the beamformers.

D. Experiment 1: Array geometries

Four array geometries, represented schematically in Fig.
1(b), are considered in this example, each containing M=4 mi-
crophones mounted respectively on the chest of a mannequin,
on glasses, on a baseball cap, and on BTE HAs. In Fig. 2, the
input reverberant target signal-to-babble noise ratio (SNRbabble)
is varied while the signal-to-interference ratio (SIR) is fixed at
20 dB, and vice-versa. Listening examples are given in [26].
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For each array geometry, Fig. 2(a) shows the fwSNRseg
improvement (∆fwSNRseg) of the left ear beamformers with
respect to a passthrough signal simulated at the left in-ear
microphone as a function of SIR. At negative SIR, the AMB
performs better than the CMMB for all arrays. The relative
advantage of the AMB decreases with increasing SIR, ulti-
mately dropping below the CMMB at approximately 6 dB SIR.
The rate of change of ∆fwSNRseg is always smaller for the
CMMB than for the AMB. The chest array gives the highest
∆fwSNRseg for both beamformers and across all SIRs, with
a mean improvement of 1.6 dB (AMB) or 1.3 dB (CMMB)
over a BTE HA. Figure 2(b) plots the MBSTOI measure
for all beamformers and array geometries as a function of
SIR. The results for the passthrough signal simulated at the
in-ear microphones are also shown for reference. For SIRs
higher than -2 dB, the CMMB outperforms the AMB for
all geometries. For the AMB, the glasses yield the highest
MBSTOI scores, while the CMMB shows little variations
in scores across array geometries. Overall, the passthrough
signals show the highest MBSTOI scores across all SIRs.
Investigation of this result using the monaural STOI [27] at
the left in-ear microphone does not show a similar advantage.
The high performance of the passthrough signal is therefore
assumed to be associated with binaural cues in the signal,
and is further discussed in Sec. IV. Figure 2(c) shows the
∆fwSNRseg for varying SNRbabble. The plots follow similar
patterns, with the chest array giving the highest ∆fwSNRseg
and the CMMB outperforming the AMB for SNRs above
6 dB. Figure 2(d) shows the MBSTOI scores for varying
SNRbabble. The CMMB slightly outperforms the AMB for all
SNRs and geometries, and the passthrough model for negative
SNR. For positive SNR, the passthrough system yields the best
performance, as expected and discussed in Sec. IV.

E. Experiment 2: Hybrid arrays

In this experiment, the effect of combining BTE HAs with
the arrays presented in Fig. 1(b) is investigated. Assuming
clock synchronisation, the BTE HAs are complemented by
the chest, glasses, and cap arrays respectively, giving a total
of M = 8 microphones per array. Figure 3 investigates the
advantage of using hybrid arrays (chest+, glasses+, and cap+)
over the pair of BTE hearing aids. Figure 3(a) shows the
improvement in ∆fwSNRseg at the left ear, and Fig. 3(b)
shows the improvement in MBSTOI, both as a function of
SIR with SNRbabble fixed at 20 dB.

Figure 3(a) shows that hybrid arrays lead to an increase in
∆fwSNRseg for all geometries and beamformers. For both
beamforming methods, the chest+ array shows the highest
improvements, followed by the cap+ and the glasses+. For the
cap+ and chest+ arrays, the CMMB yields higher ∆fwSNRseg
improvements than the AMB for SIR>0 dB. For the glasses+

array, the same behaviour occurs when SIR>6 dB. On aver-
age, the largest ∆fwSNRseg improvement is obtained by the
CMMB using the chest+ array, with mean improvement of
2.9 dB over the considered SIR range. For ∆MBSTOI scores,
Fig. 3(b) shows that MBSTOI improvements are monotoni-
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Figure 3: Improvement, ∆, in (a): ∆fwSNRseg (dB), (b):
MBSTOI (%), when combining BTE HAs with other arrays,
relative to the BTE HAs, for SNRbabble = 20 dB.

cally decreasing with increasing SIR. For all hybrid arrays,
the CMMB yields higher improvements compared to the
AMB. Moreover, the AMB leads to decreases in MBSTOI for
positive SIR. Overall, the highest improvements are obtained
by the CMMB using the cap+ and chest+ arrays, giving mean
improvements of 6.2 % and 6.7 %, respectively, over the
CMMB using BTE HAs.

IV. DISCUSSION

Experiment 1: Array geometries. Results show that the
MPDR using adaptive SCM estimation performs better for
noise reduction at low input SNR (and SIR) than when using
the compact-model SCM estimation, but the opposite is true
at high SNR. This is because, at low SNR, the adaptive SCM
is dominated by noise and, as the SNR increases, it begins to
contain more desired speech. This may lead to target signal
cancellation, especially if there is a steering vector mismatch
[19], [28]. MBSTOI scores show that, while the adaptive
method outperforms the compact model for noise reduction in
some specific cases, the opposite is generally true for predicted
intelligibility. These results are indeed consistent with the
study of BTE arrays in [8], and suggest that the adaptive
method introduces target signal degradation.

Results also show that the chest array presents a clear
advantage over other geometries for the noise reduction task.
This is likely due to the superior spatial diversity and wider
aperture of the array with respect to the other geometries,
and extends findings from [11], considering arrays of M=18
microphones, to arrays of M=4 microphones. This result
further motivates the need to consider several geometries when
designing beamformers: using a chest array can lead to an
additional 1.6 dB mean attenuation compared to BTE HAs.

The relatively small variability of MBSTOI scores across
array geometries when using compact-model SCM estimation
shows an interesting application for special needs users. In-
deed, a wearable array could be substituted for another, e.g. to
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accommodate for the listener’s disability, without substantial
loss of intelligibility at the beamformer output.

Finally, the MBSTOI scores highlight one shortcoming of
classical binaural beamforming: at positive SNR (or SIR), the
best MBSTOI scores are obtained by a passthrough system at
the listener’s ears. Unless otherwise designed, the beamformer
output changes spatial cues such that the target signal and
residual noise appear as coming from the same direction,
thus suppressing noise-related spatial cues. As a result, spatial
release from masking cannot occur and the predicted intel-
ligibility score is limited. This effect is less noticeable at
low SNR as there is a large potential for noise reduction by
the beamformers. This phenomenon could be addressed by
designing beamformers recreating true spatialisation of all the
recorded sources and interferences [20], [29], [30].

Experiment 2: Hybrid arrays. Results show that the
compact model SCM estimation method often finds more
benefits in the merger of BTE HAs with wearable arrays than
the adaptive method does, both in terms of noise reduction
and predicted intelligibility. Additionally, while the adaptive
method leads to fwSNRseg improvements when using hybrid
arrays, it is also shown to lead to decreases in MBSTOI scores.
This, together with informal listening tests provided in [26],
further confirm that the adaptive method is likely to create
target signal degradation.

V. CONCLUSION

The use of a model-based [8] SCM estimation method
for MPDR beamforming has been explored for wearable
arrays. When compared to a classical adaptive SCM esti-
mation method, the model-based method resulted in higher
intelligibility scores, with little variability across geometries.
An array placed on a user’s chest exhibited the highest noise
reducing capabilities, with a mean 1.3 dB improvement over
BTE hearing aids. Combining BTE hearing aids with various
wearable arrays showed that the compact model estimation
method can yield mean MBSTOI improvements up to 6.7 %
higher than when using the BTE hearing aids alone.
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