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Abstract—Acoustic sensor networks with ad-hoc topology currently
seek application for acoustic signal processing in place of traditionally
compact microphone arrays. Wireless configuration of the network will,
however, impose additional challenges of which the synchronization of
autonomous clocks has already received considerable attention under the
premise of lossless transmissions. Further constraining to low latency, a
serious impact of packet loss is expected as a result of UDP protocol
operating the network. Such packet loss will be detrimental not only to
the function of multi-channel acoustic signal processing over the network,
but may deteriorate already the necessary estimation of sampling rate
offset (SRO) between ad-hoc sensor nodes from incomplete waveforms.
To study this aspect, the paper firstly revisits formal statistical packet
loss models based on first-order Markov chains and, secondly, introduces
online-capable methods for blind SRO estimation including the recursive
band-limited interpolation (RBI), an online form of weighted averaged co-
herence drift (WACD) and a double-cross-correlation processor (DXCP)
in FFT-domain. For experimental investigation, we then embed statistical
simulation of burst-packet loss in a range of packet-loss rates into
otherwise real acoustic data. In this setting, WACD and DXCP methods
with proposed modifications demonstrate effectiveness in terms of SRO
estimation accuracy and synchronization performance.

Index Terms—Wireless acoustic sensor network; sampling rate offset
estimation; sampling time synchronization

I. INTRODUCTION

In times of rising demand for digital communication and ongoing
spread of wearable electronic devices, wireless multimedia sensor
networks have attracted an elevated attention from the interdis-
ciplinary research community [1]. If individual sensor nodes are
equipped with microphones, such a network is usually referred
to as wireless acoustic sensor network (WASN) [2]. Autonomous
nature of sensor devices with independent clocks makes a rigid
time synchronization of sensor signals necessary for diverse WASN
applications aiming at coherent signal processing [3]. An essential
component of clock synchronization is estimation of sampling-rate
offset (SRO) existing between signals of any two ad-hoc sensor
nodes [4]. Approaches for SRO estimation, which merely utilize the
audio signals already available at the processing node for coherent
signal processing, are typically categorized as blind methods [5]. To
the best of our knowledge, all approaches for blind SRO estimation
published so far were developed under the assumption of idealized
lossless data transmission in WASN [5]–[20].

In WASN applications for speech communication, the acquired
audio signals have to be broadcast over the network in real-time
with a limited end-to-end delay. In such low-latency communication
systems, the message-oriented User Datagram Protocol (UDP) is
often used in the transport layer for fast signal delivery without
any retransmission of lost data packets [21] due to various trans-
mission impairments such as path loss, multipath distortion or RF
interference. As reported in [22], wireless communication channels
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can suffer from a considerable amount of packet-loss rates even up
to 50 %. The lost signal may easily become harmful not only for
speech enhancement but also for blind SRO estimation. Furthermore,
the latter has to be executed in an online fashion. From all methods
for blind SRO estimation, our study involves three methods suitable
for online processing: recursive band-limited interpolation (RBI) [15],
an online form of weighted averaged coherence drift (WACD) [17]
and an online double-cross-correlation processor (DXCP) [20].

In our study of robustness of online SRO estimators against packet
loss, we shall take into account an aspect reported in previous work
[10], and confirmed by own experiments, that RBI shows better
performance on real-world acoustic data in contrast to just simulation.
We therefore rely on recordings in a real acoustic environment
accomplished with a Raspberry-Pi network to deliver complete data.
Controlled packet loss is then introduced artificially into the data by
applying a generalized Gilbert-Elliott (GE) channel model [23], [24],
which proved to be well applicable for wireless transmission channels
with burst-loss characteristics [22], [25].

The remainder of this paper is organized as follows: In Sec. II, a
prototype WASN with signal packet loss is expressed by means of
the generalized GE model, which is revisited. Then, online-capable
methods for blind SRO estimation, the time-domain RBI [15], an
online form of the WACD algorithm [17] and the online DXCP in
FFT domain [20], are briefly introduced in Sec. III. Sec. IV describes
our acquisition of real-world acoustic data captured by WASN based
on Raspberry Pi computers. The resulting performance of online SRO
estimators under burst-packet loss are compared and discussed in
Sec. V, before conclusions are drawn in Sec. VI.

II. SIMULATION OF WASN SIGNALS WITH PACKET LOSS

Fig. 1 depicts a two-sensor prototype WASN. The i-th sensor
acquires a continuous-time microphone signal yi(t) = xi(t) + vi(t),
i ∈ {1, 2}, to be sampled by an asynchronous analog-digital
converter (ADC), where vi(t) is uncorrelated self-noise of respective
microphones. Without loss of generality, node 1 is assumed to have a
perfect ADC, which starts its recording immediately upon request and
delivers a discrete-time signal y1[n] = y1(T1 · n) with the nominal
sampling-time interval T1 =1/fs as of the nominal sampling rate fs.
In contrast, node 2 is equipped with an imperfect ADC which starts
its operation with time offset d · T1 represented by sampling-time
offset (STO) d ∈ R and has a slightly different sampling-time interval
T2 =(1+ε) ·T1 characterized by small real-valued SRO1 ε ∈ R and,
thus, delivers a discrete-time signal y2[n] = y2(T2·n+T1·d). Further,
the asynchronous signals yi[n] are transmitted via unreliable traffic
channels (ch-1 and ch-2) to a processing node 3 for SRO estimation
and potentially further cooperative signals processing.

1Note that ε is here termed SRO, since it similarly relates sampling
frequencies as f2 =1/T2 =(1−ε/(1+ε))·fs≈(1−ε)·fs, if |ε|�1.
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Fig. 1. Block diagram of prototype WASN under signal packet loss.

Due to the packet-based data transmission and randomly occurred
impairments in both channels, some signal packets get lost in the
signals zi[n] modelled with a binary mask here as follows:

zi[`p ·Np + np] = mi[`p] · yi[`p ·Np + np] , (1)

where `p∈Z is the packet index, np ∈ {0, . . . , Np−1} is a subindex
within one packet of length Np samples, and mi(`p) ∈ {0, 1} are the
realizations of a binary random process Mi(`p). While mi(`p) = 1
implements a secure packet delivery over the i-th channel, a signal
packet-loss is modelled with mi(`p) = 0 and no other packet-loss
concealment takes place in our system.

The packet loss process M(`p) is often of bursty nature, i.e., it
shows a mixture of variable-length packet loss, where one burst is
defined as the loss of one or more consecutive data packets [22]. The
packet loss distribution in such traffic channels is usually simulated
using the generalized GE model [22]–[25], i.e., a first-order two-state
hidden Markov chain as shown by Fig. 2. Specifically, the transition
probabilities between the good (g) and bad (b) states of a hidden
process S`p ∈ {g, b} are defined as

pgb = Pr(S`p = b |S`p−1 = g) (2)

pbg = Pr(S`p = g |S`p−1 = b) , (3)

while the conditional emission probabilities of packet loss in the good
and bad states, respectively, can be written as

pg = Pr(M(`p) = 0 |S`p = g) (4)

pb = Pr(M(`p) = 0 |S`p = b)� pg . (5)

Such GE model is thus controlled by four parameters and delivers
a total probability of packet loss (packet loss rate) given by

ppl = Pr(M(`p) = 0) = pg ·
pbg

pgb + pbg︸ ︷︷ ︸
Pr(S`p= g)

+ pb ·
pgb

pgb + pbg︸ ︷︷ ︸
Pr(S`p= b)

. (6)

In our investigations, Gilbert’s assumptions of an error-free good
state, pg =0 (no packet lost in the good state) and pb =1 (all packets
lost in the bad state), result in the simplified Gilbert model controlled
by merely two parameters pgb and pbg. The latter can then be
calculated from two more intuitive parameters, i.e., a desired packet
loss rate ppl and a mean burst length2 µb measured in seconds, via

pbg =
Np
fs · µb

and pgb = pbg ·
ppl

1− ppl
. (7)

Note that the generalized GE model is adapted to variable packet
sizes in [22] and its second order statistics are investigated in [25].

2The mean burst length µb in (7) is denoted by b̄ in [22] and as the averaged
burst error length (ABEL) parameter in [25].
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Fig. 2. The generalized Gilbert-Elliott Markov-channel model.

III. ONLINE METHODS FOR BLIND SRO ESTIMATION

Of the available methods for blind SRO assessment, the time-
domain RBI [15] and the online (open-loop) DXCP in the FFT-
domain [20] were developed for online processing. In order to
improve robustness of the RBI algorithm and precision of the DXCP
approach, both methods are modified in some processing steps
compared to [15] and [20], respectively. The WACD method has been
introduced in [17] as an offline estimator and is thus reformulated
here for online processing on continuous audio streams.

A. Time-domain recursive band-limited interpolation (RBI)

In the RBI approach [15], maximization of an ambiguity function,

α̂ rbi = argmax
α

∑
∀n

Q̂n(α, τ) , (8)

has to be solved, where α = 1+ε denotes a scaling factor connected
with the sought SRO ε, while τ is linked to the STO d. The function∑
∀n Q̂n is nothing but the discrete-time broadband correlation

between two signals zi[n], where band-limited interpolation acts upon
one of the signals z1[n],

Q̂n(α, τ) = z2[n]

p+L0∑
m=p−L0

z1[m] · sinc(αn− τfs −m) (9)

with an anchor index p = bαn − τfsc, an interpolation window of
size L0, and the sinc-function sinc(x) = sin(πx)/(πx). Here, b.c
denotes to round down.

Given (9), the first and second order derivatives q′=∂
∑
∀n Q̂n/∂α

and q′′=∂2∑
∀n Q̂n/∂α

2 can be analytically formed and a Newton-
Raphson algorithm can be applied for a global maximum search.
Furthermore, a stochastic approximation method can be utilized to
obtain a sequential estimator for [15] with

α̂ rbi[n] = α̂ rbi[n− 1] + γ · (q̃′′ [n])−1 · q̃′ [n] , (10)

q̃′ [n] = β · q̃′ [n− 1] + q̂ ′ [n] , (11)

q̃′′ [n] = β · q̃′′ [n− 1] + q̂ ′′ [n] (12)

with stepsize γ=1, forgetting factor β, q̂ ′=∂Q̂n/∂α and
q̂ ′′=∂2Q̂n/∂α

2 as instantaneous derivatives at α̂ rbi[n − 1]. From
α̂ rbi[n], the SRO estimate is obtained as ε̂ rbi[n] = α̂ rbi[n]− 1.

In order to stabilize the convergence of (10), a damped Newton-
Raphson method is used in our investigation with constant stepsize γ
in contrast to [15]. Further, the update equation (10) is executed only
if |γ · (q̃′′ [n])−1 · q̃′ [n]| < εubi for limiting the corresponding SRO
update to an upper bound per iteration (ubi) of εubi.

It is important to mention that the RBI method has to be initialized
in close proximity to the global maximum of the ambiguity function∑
∀n Q̂n(α, τ) by some good initial estimates ε̂ rbi[0] and τ̂ rbi[0]

as reported in [15]. Moreover, τ̂ rbi[0] effectively comprises the
aforementioned time offset d̂ · Ts and a time-difference of arrival
(TDOA) τh between signals zi[n], the separation of which is not
trivial and essentially requires external information of the TDOA.

In experimental evaluation, the following RBI parameters are used:
L0 = 10, β = 0.999, γ = 10−6 and εubi = 1 ppm.

1111



z1[n]

z2[n]

z−τε(`) Coherence
Γ
τε(`)
12 (k, `Ns)

Coherence
Γ
τε(`)
12 (k, `Ns−Nd)

z−Nd (.)∗

∑l−1
l′=0Nsε̂

wacd(`′)

ε̂wacd(`)

SRO
Estimator

τε(`) b.e

Fig. 3. Online WACD implementation with tracking analysis window.

B. Online weighted averaged coherence drift (WACD)

In [17] we proposed a multi-stage coherence drift based sam-
pling rate synchronization method (called WACD) that alternatingly
estimates the SRO between two signals and resamples one of the
signals until a convergence criteria is met. Here, we extend the basic
idea towards an online method by incorporating the proposed stream
processing from [26]. The key idea is to track the SRO-induced delay
τε between the signals and to adjust the analysis windows of the
coherence estimators such that τε is compensated to a large extent.
This enables a continuous SRO estimation from data streams without
the need for a resampling stage (see Fig. 3).

To this end, we have to change our approach from [17], i.e., a
frame-oriented data addressing and processing, to a sample precise
addressing and add an adjustable shift parameter τ . The required cross
and auto power spectral densities (PSD) Φτij(k, n) with i, j ∈ {1, 2}
are estimated via a Welch method, where k denotes the frequency
bin index and n defines the index of the first used sample. On
total for the PSD Φτij(k, n) NW samples from each stream, i.e.,
zi[n−τ ] . . . zi[n+NW−1−τ ] and zj [n] . . . zj [n+NW−1], are used:

Φτij(k, n) =
1

νw

νw−1∑
κ=0

Zi(k, n+κNw−τ) · Zj(k, n+κNw)∗. (13)

Hereby, Zj(k, n+κNw) denotes the N -point short-time Fourier
transform (STFT) of the samples zj [n+κNw] . . . zj [n+κNw+N−1]
and (.)∗ is the complex conjugate. So the method averages across
νw= b(NW−N+Nw)/Nwc STFT subframes for a Welch shift Nw.

Given the signal streams z1[n] and z2[n] every Ns samples the
coherence function product P (k, `Ns, τ) for every `-th frame is
calculated via

P (k, `Ns, τ) = Γτ12(k, `Ns) · Γτ12(k, `Ns−Nd)
∗ (14)

with a temporal distance of Nd samples between the coherence
functions that are defined by:

Γτ12(k, n) = Φτ12(k, n)/
√

Φ0
11(k, n− τ) · Φ0

22(k, n). (15)

The temporal shift τ in (15) should follow the SRO induced delay τε
between the streams, which can be approximated by accumulating the
SRO estimates ε̂wacd(`) over time. Since ε̂wacd(`) is estimated every
`Ns samples also τε(`) is estimated frame-wise via

τε(`) =

⌊
`−1∑
`′=0

Ns ε̂
wacd(`′)

⌉
, (16)

where b.e denotes rounding to the next integer value.
SRO estimates ε̂wacd(`) are gathered by considering the SRO-

induced delays τε(`) and accumulating P (k, `Ns, τ) from a synchro-
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Fig. 4. Online DXCP in the FFT domain for open-loop architecture [20].

nization time instance (`′ = 0), i.e., the time after compensating the
initial time offset d · T1, to the current time (`′ = `) with

Pwacd(k, `Ns) =
1

`

`−1∑
`′=0

P (k, `′Ns, τε(`
′)). (17)

If rapid SRO changes are expected, the averaging period has to be
reduced appropriately.

The slope of the phase from (17) can be used to estimate the
SRO in different ways. As proposed in [17] we project the values
Pwacd(k, `Ns) into the complex plane for averaging across the fre-
quency bins and subsequently estimating ε̂wacd(`) via

ε̂wacd(`)=
εmax

π
∠

Kmax∑
k=Kmin

∣∣∣Pwacd(k, `Ns)
∣∣∣ exp

(
jN∠Pwacd(k, `Ns)

2Ndkεmax

)
.

(18)

Here, Kmin . . .Kmax defines the regarded frequency bin range and
εmax is the maximum expected SRO.

In experiments, the parameters are set as follows: N = 213, STFT
with periodic Blackman window, NW = 214, Nw = 210, Ns = 28,
Nd = 214, εmax = 400 ppm, Kmin = 100, Kmax = 1800.

C. Online (open-loop) double-cross-correlation processor (DXCP)

The core of DXCP-based SRO estimation [5], [20] is a calculation
of the so-called secondary cross-correlation function (CCF) denoted
here by ψ̃12(`, λ) at signal frame index ` and lag λ and defined as
cross-correlation of two primary CCFs at a certain time distance.

For an online form of the secondary CCF ψ̃12(`, λ) from [20],
the STFT coefficients Zi(k, `) at frequency bin k are calculated
with frame size N and frame shift Ns from asynchronous sig-
nals zi[n] in the first step as shown by Fig. 4. Next, a primary
cross-spectral density (CSD) Φ̃12(k, `) is calculated recursively,

Φ̃12(k, `)=α1 ·Φ̃12(k, `−1)+(1−α1)·Z1(k, `)·Z∗2 (k, `) , (19)

where α1 is a smoothing constant and Φ̃12(k, 0) = 0. With the most
recent values of Φ̃z1z2(k, `) stored in a circular buffer, the desired
secondary CCF ψ̃12(`, λ) is computed as N -point inverse FFT (IFFT)
of a secondary CSD Ψ̃12(k, `) for frames ` ≥ Lb+1,

ψ̃12(`, λ) ◦IFFT—–• Ψ̃12(k, `) = α2 · Ψ̃12(k, `− 1) + (20)

+ (1− α2) · Φ̃12(k, `) · Φ̃∗12(k, `− Lb) ,

where α2 is a second smoothing constant and Ψ̃12(k, Lb) = 0.
Finally, a real-valued maximum λmax

p (`) is obtained by parabolic
interpolation over the secondary CCF ψ̃12(`, λ) as in [5] to deliver
the desired SRO estimate for frames ` ≥ Lb+Lc+1 obtained via

ε̂ dxcp(`) =
λmax

p (`)

Ns · Lb
. (21)

In experimental evaluation, the parameters of FFT-DXCP are set to
N = 213, Ns = 211, Lb = Lc = 37, α1 = 0.5 and α2 = 0.99.
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Fig. 5. Geometrical setup of WASN based on Raspberry Pi.

IV. REAL WASN DATA WITH SIMULATED PACKET LOSS

The WASN of Fig. 1 is implemented (with lossless transmission)
on three Raspberry-Pi3 (R-Pi) computers of model B+ by using a
framework for networked signal processing called MARVELO [27].
As shown by Fig. 5, the R-Pi network is placed in a typical meeting
room of size (7×5×2.5) m with reverberation time T60 ≈ 700 ms.
The network is controlled by an external laptop computer operating
as manager. As acoustic excitation, speech signals are played back
by a loudspeaker. Both node 1 and 2 are equipped with a ReSpeaker
soundcard with a 4-microphone array of which only one microphone
is used for signal acquisition at a nominal sampling rate fs = 16 kHz.
For purposes of investigation, we provide on node 2 a fast STFT
resampling method [12] with FFT size 210 as in [28] in order to
create reproducible SROs εp = (p− 1) · 20 ppm for i ∈ {1, . . . , P}
with P = 6. Single-microphone signals of node 1 and 2 are losslessly
sent via TCP/IP over WLAN to node 3 and recorded there as
asynchronous two-channel signals for further analysis on an extra PC.
For every p-th SRO value, R = 5 different one-minute speech signals
enumerated by r are acquired, resulting in overall 30 recordings.

Offline evaluation of lossless asynchronous recordings: In or-
der to estimate an inherent SRO εinh between node 1 and 2
(common for all recordings) and the STO dpr (specific for ev-
ery recording) both required for evaluation of online methods
for SRO estimation, the acquired signals are first analysed by
the offline time domain DXCP (TD-DXCP) method implemented
in multi-stage (MS) fashion [5]. In contrast to [5], TD-DXCP is
extended here by STO estimation based on the real-valued maximum
lag υmax

pr of an SRO-compensated primary CCF φ12(`, υ). Relying on
symmetrical geometrical setups with TDOA τh = 0 in all recordings,
the offline STO estimates are obtained as d̂ off

pr = υmax
pr −τh = υmax

pr .
With TD-DXCP parameters set to B=5fs, K=2B, Υ=K − 1,
Λ=50, periodic Blackman analysis window, and using the afore-
mentioned STFT-resampler [12], the SRO and STO estimates ε̂ off

pr

and d̂ off
pr of each recording are drawn after the 5-th MS iteration.

From ε̂ off
pr , an estimate of the inherent SRO is obtained as ε̂inh =

(
∑P
p=1

∑R
r=1 ε̂

off
pr − εp)/(P · R) = 3.056 ppm. Assessment of d̂ off

pr

reveals a large STO range of [1300; 4000] smp with a mean of
2263.32 smp and a standard deviation of 708 smp.

Generation of burst-like packet loss: In our investigations, the
signal packet length is set to Np = 256 smp (16 ms for fs = 16 kHz)
typical for packed-based transmission of speech or generally audio
signals [22]. The mean burst length of the GE model is chosen to
µb = 32 ms resulting in the transition probability pbg = 0.5 according
to (7). The transition probabilities pgb are further calculated via (7)
from tentative packet loss probabilities in the range ppl = (v−1)·5%
for v ∈ {1, . . . , V } with V = 11. The burst-like packet loss is then
simulated on both channels with independent loss patterns.

V. EXPERIMENTAL EVALUATION

The online methods for blind SRO estimation of Sec. III take part
in our evaluation and deliver SRO estimates ε̂pr specific to each
SRO p and recording r. The RBI method is supported oracle with
an offline STO estimate d̂ off

pr obtained on lossless recordings and
initialized with a good SRO estimate of online DXCP available after
10 sec. The WACD approach makes use of GCC-PHAT [29] on the
first NW samples of the recordings to estimate the STO. To show the
impact of STO synchonization on WACD, the experiments include
results for WACD without and with STO compensation denoted by
WACD and WACD-S, respectively. Further, a modification of the
DXCP method (denoted by DXCP-P4) is implemented by using phase
transform (PHAT) normalization from [29] in (19) followed by an
additional 4-fold upsamling of the secondary CCF ψ̃12(`, λ) prior to
parabolic interpolation used for maximum search.

Fig. 6 (a) then shows SRO root mean-square error (RMSE) values

RMSEε =

√
1

PR

∑
p,r

(ε̂pr(∞)− εp − ε̂inh)
2 (22)

of online estimations taken at the end of the signals [30]. The DXCP
method seems to be robust to packet loss in the considered range.
The RMSE values of other methods grow with increasing packet-
loss rates ppl. Obviously, WACD-S and DXCP-P4 achieve the best
estimation accuracy and deliver the lowest global RMSE values of
0.47 ppm and 0.45 ppm, respectively, as shown by the legend.

In order to evaluate the synchronization performance, the online
SRO estimates and the offline STO estimates d̂ off

pr are used for STO
compensation and resampling [31]–[33] of the lossless recordings
y2[n] resulting in a signal y2,sync[n] synchronized to y1[n]. The
resulting values of an averaged magnitude-squared coherence (MSC)
obtained in the style of a Welch average across the entire synchro-

(a) Estimation accuracy

0 10 20 30 40 50
10−1

100

101

R
M

SE
ε

RBI (7.29) WACD (2.19) WACD-S (0.47)
DXCP (0.86) DXCP-P4 (0.45)

(b) Synchronization performance
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Fig. 6. Performance evaluation of online SRO estimation: (a) SRO estimation
accuracy, (b) Synchronization performance on signals y1[n] and y2,sync[n].
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nized signals y1[n] and y2,sync[n] are depicted in Fig. 6 (b), where
results of WACD are omitted. Although all online methods improve
the raw MSC of the asynchronous signals y1[n] and y2[n] occurring
here as a lower bound (LB), the two refined methods WACD-S
and DXCP-P4 perform best among all contenders in restoring or
approaching a coherence upper bound (UB) based on resampling with
oracle SRO and STO.

VI. CONCLUSIONS

In this paper we have described three online methods for blind
SRO estimation to extend the previously published time-domain
RBI method [15], the WACD algorithm [17] and the open-loop
DXCP approach in FFT-domain [20]. In order to approach realistic
conditions, our evaluation takes place on real-world recordings with
simulated burst-packet loss typical for low-latency wireless acoustic
sensor networks. To this end, appropriate signal models were in-
troduced including the generalized Gilbert-Elliott channel model for
controlled simulation of packet loss. It turns out that WACD with STO
pre-synchronization of the input signals and DXCP with additional
PHAT normalization of the involved primary cross-spectral density
achieve the best performance in terms of estimation accuracy and
synchronization performance under packet loss.
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