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Abstract—Rating the usefulness of individual microphones
for subsequent signal processing is a key problem in Wireless
Acoustic Sensor Networks (WASNs). This contribution expands a
general-purpose approach for microphone ranking and selection
in WASNs to facilitate online selection in time-variant scenarios.
A Kalman Filter (KF) is employed to robustly estimate the time-
varying inter-channel correlation of single-channel signal fea-
tures. The information contained in multiple features is efficiently
combined by recursively updating the dominant singular vector
of each channel-wise matrix of feature correlation coefficients to
obtain the similarity of the recorded signals while accounting
for all features simultaneously. Capturing the resulting pair-
wise similarity of microphone channels by a graph structure, the
individual microphones’ utility is obtained as the Fiedler vector,
which is an eigenvector of the graph Laplacian. A method to
resolve the inherent sign ambiguity of the Fiedler vector using
the entropy of the observed microphone signals is proposed.
Experiments using synthesized and recorded data demonstrate
the efficacy of the proposed approach.

Index Terms—channel selection, Fiedler vector, graph Lapla-
cian, microphone utility, wireless acoustic sensor network

I. INTRODUCTION

Multichannel acoustic signal processing algorithms, e. g., for
spatial filtering [1] or source localization [2], rely on spatially
distributed microphones offering different views on the acous-
tic scene. While this is especially true for Wireless Acoustic
Sensor Networks (WASNs) with their potentially very large
inter-microphone distances, there, the available microphone
signals are generally not equally useful for subsequent signal
processing applications. Their usefulness depends on a variety
of factors, e. g., proximity to acoustic sources, transducer
directivity and orientation, occlusion of sensors, reverberation
and additive sensor noise [3]. Furthermore, a microphone’s
usefulness is application-specific in the sense that some signals
can be useful to specific signal processing algorithms, e. g., as
a noise reference for a Generalized Sidelobe Canceller (GSC)
[4], while being useless for other algorithms.

We assume the observed sound field comprises a single
coherent sound field component evoked by the Source of
Interest (SoI), and diffuse or incoherent components origi-
nating from typical signal degradations, like additive sensor
noise, reverberation and spatially extended interferers [5]. With
this in mind, correlation between the observed signals and
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other quantities derived from it appear as a natural choice
to quantify how useful microphone signals are for coherent
signal processing. Prior published work includes correlation-
based selection schemes for a fixed number of microphones for
beamforming based on the MultiChannel Correlation Coeffi-
cient (MCCC) [6] and microphone utility measures specifically
for Minimum Mean Square Error (MMSE) signal extraction
[7]. In WASNs, the need to collect the microphone signals
at a central unit to be able to compute the utility measure
constitutes a significant drawback for both aforementioned
methods (a distributed version of [7] has been proposed in
[8]). A heuristic selection of the single best channel in terms
of Word Error Rate (WER) in Automatic Speech Recognition
(ASR) based on signal features has been proposed in [9],
but requires ASR systems to be available for utility rating.
In contrast, a general-purpose method to estimate microphone
utility that exploits the correlation of low-dimensional single-
channel signal features as a compressed representation of the
signal waveform for both channel selection and economizing
data rate in WASNs was proposed in [10], [11]. However, not
transmitting the waveforms precludes usage of cross-channel
features, like coherence. As the approach does not optimize
cost functions and performance measures of subsequent appli-
cations, it remains applicable for a broad class of algorithms.

In this paper, we expand the work in [10], [11] to account for
time-variant microphone utility caused, e. g., by moving acous-
tic sources and sudden changes of the acoustic environment
typical for smart home scenarios. We assume that the SoI is
the only common signal component that evokes similar feature
values in all microphone signals and that the SoI dominates the
noise components to avoid similar noise statistics dominating
the feature correlation. Thus, the relative contribution of the
SoI to each microphone signal can be estimated by the dom-
inant singular vector of each channel-wise matrix of feature
correlation coefficients [10] that best explains the observed
feature covariance, termed similarity vector for brevity. We
employ a Kalman Filter (KF) for robust online estimation
of the feature correlation coefficients. To facilitate efficient
tracking of the time-variant microphone utility, we provide
a recursive update rule for the dominant singular vectors
that avoids recomputing costly Singular Value Decompositions
(SVDs) in every time step. Finally, we propose an improved
scheme to resolve the sign ambiguity of the Fiedler vector
based on the differential entropy of the observed signals.
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Algorithm 1 Proposed update for microphone utility at time k

Input: a(f)[k] (instantaneous feature vector)
Input: µ(f)[k − 1], ∀f ∈ {1, . . . , F} (previous KF state vectors)
Input: gp[k − 1], ∀p ∈ {1, . . . , P} (previous similarity vectors)
Output: u[k] (Fiedler vector)

for features f = 1 to F do
µ(f)[k] ← updated KF state vector, see (9) and (11) to (13)
b̃p,p′ ← updated feature correlation coefficients, see (14) and (15)

end for
for microphones p = 1 to P do

gp[k] ← updated similarity vector, see (16) to (18)
end for
R[k] ← concatenated normalized gp[k], ∀p ∈ {1, . . . , P}, see (19)
W[k] ← symmetric adjacency matrix, see (20)
L[k] ← random-walk graph Laplacian, see [11]
u[k] ← Fiedler vector of L, sign correction using entropy (21)

II. ONLINE ESTIMATION OF MICROPHONE UTILITY

In this section, we expand the method in [11] to facilitate
online estimation of the microphone utility and specifically
highlight the advances relative to [11]. The proposed method
comprises three parts, described in Sections II-A to II-C:

1) computing the correlation coefficients of individual signal
features across microphones

2) computing the pair-wise channel similarity w. r. t. several
features simultaneously, based on the similarity vector,
i. e., the dominant singular vector of the matrix of feature
correlation coefficients in each microphone channel

3) constructing a graph structure to model the pair-wise
channel similarity and computing the Fiedler vector of
its random-walk graph Laplacian

A summary of the proposed method is given in Algorithm 1.

A. Feature Correlation Coefficients

Let a
(f)
p [k] denote the value of feature f ∈ {1, . . . , F}

observed at microphone p ∈ {1, . . . , P} for signal block k
and define the instantaneous feature vector

a(f)[k] =
[
a
(f)
1 [k] · · · a

(f)
P [k]

]T
∈ RP . (1)

Possible features include signal energy, statistical moments
of the corresponding waveform or spectrum, and many more
[12], [13]. In [11], the feature correlation coefficients b̃(f)p,p′ of
microphones p, p′ w. r. t. feature f are computed offline using
knowledge of the feature values in all signal blocks. Instead,
we cast the recursive estimation of the covariance matrix of
a(f)[k] as a KF and obtain the feature correlation coefficients
b̃
(f)
p,p′ [k] by subsequent normalization of the estimate as detailed

in the following. Note that each feature requires a separate KF.
To this end, we denote the outer product of the instantaneous
feature vector a(f)[k] after subtracting the sample average by

A(f)[k] =
(
a(f)[k]− a(f)[k]

)(
a(f)[k]− a(f)[k]

)T
, (2)

where a(f)[k] is the recursive sample average of a(f)[k]
with temporal averaging constant of λ. Then, the estimated
covariance matrix of a(f)[k] corresponding to feature f is

B(f)[k] =


b
(f)
1,1 [k] · · · b

(f)
1,P [k]

...
...

b
(f)
P,1[k] · · · b

(f)
P,P [k]

 = Ê
(
A(f)[k]

)
, (3)

where Ê is an operator approximating statistical expecta-
tion by temporal averaging. Let the latent KF state vector
z(f)[k] ∼ N

(
z(f)[k]

∣∣µ(f)[k],P(f)[k]
)

be normally distributed
with mean µ(f)[k] and covariance matrix P(f)[k]. We employ
its mean vector µ(f)[k] to model B(f)[k] as defined in (3). Due
to the symmetry of B(f)[k], it is sufficient to only estimate
its non-redundant elements, such that µ(f)[k] comprises only
the Q = P (P+1)

2 elements of the lower triangular portion of
B(f)[k] including the diagonal. Using the half-vectorization
operator vech [14], the mean vector µ(f)[k] of the latent vector
z(f)[k] can be compactly written as

µ(f)[k] = vech
(
B(f)[k]

)
∈ RQ. (4)

Similarly, the KF observation vector x(f)[k] consists of the
half-vectorized outer product of the instantaneous feature
vector after subtracting the sample average (see (2)), i. e.,

x(f)[k] = vech
(
A(f)[k]

)
. (5)

Completing the KF model, the Q-variate Gaussian transition
and emission distributions are

p
(
z(f)[k]

∣∣z(f)[k − 1]
)

= N
(
z(f)[k]

∣∣z(f)[k − 1],S
)
, (6)

p
(
x(f)[k]

∣∣z(f)[k]
)

= N
(
x(f)[k]

∣∣z(f)[k],T[k]
)
, (7)

respectively. The process noise covariance matrix is chosen as

S = α1IQ, (8)

where α1 is a positive scaling parameter and IQ denotes the
Q × Q identity matrix. We consider the observed features to
be more reliable when the recorded signal has high energy,
thus the observation noise covariance is chosen1 inversely
proportional to the geometric mean of the associated channel’s
signal energy, i. e.,

T[k] = α2 Diag
(

vech (E[k])
)
∈ RQ×Q, (9)

where α2 is a positive scaling parameter and the Diag oper-
ator yields a diagonal matrix containing the elements of its
argument on the main diagonal. The matrix E[k] ∈ RP×P is
defined elementwise[

E[k]
]
pp′

=

(√
ep[k] · ep′ [k] + ε

)−1
, (10)

where ε is a small positive constant to ensure invertibility
during speech pauses and ep[k] denotes the energy of the p-th
microphone’s signal at time k. With the Kalman gain matrix

K(f)[k] =
(
P(f)[k] + S

)(
P(f)[k] + S + T[k]

)−1
, (11)

the update equations for µ(f)[k] and P(f)[k] read

µ(f)[k + 1] = µ(f)[k] + K(f)[k]
(
x(f)[k]− µ(f)[k]

)
, (12)

P(f)[k + 1] =
(
P(f)[k] + S

)(
IQ −K(f)[k]

)
, (13)

respectively. Finally, the feature correlation coefficients
b̃
(f)
p,p′ [k], ∀p, p′ ∈ {1, . . . , P} are computed by

b̃
(f)
p,p′ [k] =

b
(f)
p,p′ [k]√

b
(f)
p,p[k] · b(f)p′,p′ [k]

, (14)

1This is a model choice, and does not specifically account for the type of
signal feature.
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where the b(f)p,p′ [k] are obtained from the mean vector µ(f)[k]
by reversing the vectorization (see (3) and (4))

B(f)[k] = vech−1
(
µ(f)[k]

)
. (15)

B. Channel Similarity Matrix
Similar to [11], the dominant left singular vector gp[k] of

Cp[k] =


b̃
(1)
p,1[k] . . . b̃

(F )
p,1 [k]

...
...

b̃
(1)
p,P [k] . . . b̃

(F )
p,P [k]

∈ RP×F (16)

defines the similarity vector of microphone p relative to all P
microphones while accounting for all F features. Instead of
computing a costly SVD as in [11] in each time step, we re-
cursively update gp[k] over time to reduce computational load.
Note that the left singular vectors of Cp[k] are identical to the
eigenvectors of Cp[k]CT

p[k], such that the desired dominant
left singular vector is readily obtained from the power method
[15]. While more iterations produce more accurate estimates,
our experiments indicate that the spectrum of Cp[k] varies
slowly, such that a single iteration per time step is sufficient
to track gp[k]. Hence, the recursive update is [15]

g̃p[k + 1] =
(
Cp[k]Cp[k]T

)
gp[k], (17)

gp[k + 1] =
g̃p[k + 1]

‖g̃p[k + 1]‖2
. (18)

Once all gp[k], ∀p ∈ {1, . . . , P} are updated, the overall
channel similarity matrix R[k] is constructed as in [11] by
concatenation of the normalized dominant singular vectors

R[k] =
[

g1[k]
[g1[k]]1

. . . gP [k]
[gP [k]]P

]
∈ RP×P . (19)

C. Fiedler Vector
In [11], the coherence between pairs of microphone signals
is modeled as an undirected, weighted graph G(V, E). The
vertices V represent the microphones while the weights of
the edges E reflect the pair-wise similarity of the microphone
signals. The microphone utility is then obtained as the Fiedler
vector [16], denoted by u[k], of G, i. e., the eigenvector asso-
ciated with the smallest non-zero eigenvalue of the random-
walk graph Laplacian L [17]. As G is undirected, its weighted
connectivity matrix W[k] is symmetric [18]. However, since
R[k] in (19) is generally not symmetric, we choose[
W[k]

]
pp′

=
[
W[k]

]
p′p

=
1

2

(∣∣∣[R[k]
]
pp′

∣∣∣+
∣∣∣[R[k]

]
p′p

∣∣∣) .
(20)

As strongly negatively correlated features hint at a functional
relation just like strongly positively correlated features, taking
the absolute value in (20) ensures that channels with negatively
correlated features are also considered similar.

As an eigenvector, the Fiedler vector u[k] is only unique
up to scaling, especially by −1, i. e., negation. Thus, without
additional side information, it is unclear whether useful micro-
phones exhibit high or low values in u[k], such that consider-
ing only the magnitude of the elements in the Fiedler vector
u[k] is meaningless. In [11], this sign ambiguity was resolved
by relating the elements of u[k] to the degree matrix, follow-
ing the assumption that well-connected nodes indicate useful

microphones since the SoI evokes similar features in each
channel. However, even statistically independent additive noise
signal components can produce similar signal features if their
statistics are similar. If the SoI is strongly attenuated in the
majority of channels, e. g., due to large source-microphones
distances, the cause of similar features may no longer be
the SoI but rather the noise statistics. To avoid this problem,
here, we resolve this ambiguity by preferring structured over
unstructured signals as captured by their differential entropy
[19] instead. This choice is justified here by considering that
typical SoI signals like speech are highly structured and their
entropy is low, while typical degradations like reverberation or
additive noise are less structured and thus have higher entropy.
Therefore, in each time step, we negate the Fiedler vector u[k]
whenever the Pearson correlation coefficient of the estimated
u[k] and the vector of differential entropies of all microphone
signals

h[k] =
[
h1[k] · · · hP [k]

]T
(21)

is positive, such that high utility values correspond to low
entropy and vice versa.

III. EXPERIMENTAL EVALUATION

In this section, we illustrate the efficacy of the proposed online
microphone utility estimation scheme using synthesized and
recorded data. We provide the common algorithmic parameters
for all experiments and define the performance measures used
for evaluation, before moving on to the actual experiments.

A. Parameters and Performance Measures
The microphone signals are sampled at fs = 16 kHz and
characterized using F = 3 features: the skewness and kurtosis
of the time-domain waveform and spectral flux [12]. The
features are extracted from signal blocks of length L = 1024
samples with a shift of M = 512 samples between successive
blocks, i. e., 50 % overlap. Signal entropy is estimated using a
histogram-based approach from longer signal blocks (32 000
samples ≈ 2 s with a shift of 512 samples) for more robust
estimates, but is only used for resolving the sign ambiguity and
not to characterize the signals. The temporal averaging factor
for a(f)[k] is λ = 0.99 and the noise scaling factors for the KF
in (8) and (9) are chosen heuristically based on experimental
results as α1 = 10−4 and α2 = 0.2, respectively.

As ground truth for the utility of the p-th microphone
signal, we employ the frequency-averaged Magnitude-Squared
Coherence (MSC) between the source signal and the p-th
microphone signal, i. e.,

γp[k] =
1

N

N∑
ν=1

∣∣∣∣∣∣ Φ̂src,p[k, ν]√
Φ̂src[k, ν] · Φ̂p[k, ν]

∣∣∣∣∣∣
2

, (22)

to remain application-agnostic. Here, N = L is the Discrete
Fourier Transform (DFT) length and Φ̂src,p[k, ν], Φ̂src[k, ν] and
Φ̂p[k, ν] are short-time estimates of the cross-Power Spectral
Density (PSD) and auto-PSDs of source and microphone
signals, respectively. Collecting the ground-truth utilities for
all channels in the vector

γ[k] =
[
γ1[k] . . . γP [k]

]T
, (23)
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Fig. 1: Illustration of the experimental setup for synthesized
data. Arrows indicate direction of maximum microphone sen-
sitivity (cardioid pattern). A single, exemplary source trajec-
tory is shown in red for illustration.
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Fig. 2: Quantiles of Pearson correlation coefficient r[k] be-
tween Fiedler and MSC vectors for synthesized data. Shaded
areas indicate time intervals of source movement.

the performance of the proposed algorithm is measured by the
Pearson correlation coefficient of u[k] and γ[k], i. e.,

r[k] =

(
u[k]− u[k]1P

)T (
γ[k]− γ[k]1P

)∥∥u[k]− u[k]1P
∥∥
2
·
∥∥γ[k]− γ[k]1P

∥∥
2

, (24)

where u[k], γ[k] denote the average of the elements of u[k],
γ[k], respectively, and 1P is the all-ones vector of length P .

B. Synthesized data

The setup for synthesized data is depicted in Figure 1. A
total of P = 10 cardioid microphones with the direction of
maximum sensitivity indicated by arrows are placed in a room
of dimensions 5 m × 5.2 m × 3 m with a reverberation time
of T60 = 500 ms. A single SoI moving in the Region of
Interest (RoI) and emitting a speech signal of 27 s duration
is simulated using [20]. The source moves linearly to a new
random position from 8 s–10 s, and from 18 s–20 s, indicated
by the shaded gray areas in Figure 2. During other time
intervals, the source randomly moves in a 0.2 m×0.2 m square
around a fixed position to simulate slight head movements
of a human speaker without displacement of the body. All
microphones and the source are located in a horizontal plane

6.26m

4
.8
6
m

0.85m

0.75m

Loudspeaker

Mic. 1, 2

Mic. 3, 4

Mic. 5, 6

Mic. 7, 8 Mic. 9, 10

2m

Obstruction 1

Obstruction 2

Obstruction 3

Fig. 3: Illustration of the experimental setup for recorded data.
Line-of-sight between the loudspeaker and microphones 1–4
is blocked.

at a height of 1 m. Additive white Gaussian noise of identical
power is added to each microphone channel such that a long-
term Signal-to-Noise Ratio (SNR) of 10 dB is obtained at
the microphone with the strongest SoI source image. Due to
the source movement, the SNR values can vary drastically if
the source comes very close to one of the microphones with
typical values in the range of 5 dB to 10 dB. The experiment
is repeated for ten different realizations of the random source
trajectory and two different speech signals (one male and one
female) for a total of R = 20 trials.

Figure 2 shows the time-varying median of r[k] across
all trials in black, as well as the lower and upper quartile
in red and blue, respectively. Ideally, r[k] should quickly
approach a value of 1 and remain there for the entire du-
ration of the experiment. Evidently, the proposed algorithm
initially produces utility estimates that agree very well with
the observed coherence after only 1 s. Although the agreement
rapidly deteriorates during strong source movement, indicated
by the shaded gray time intervals in Figure 2, the median
shows that r[k] re-attains values of 0.8 within about 3 s in
the majority of trials. Across all signal blocks and trials, r[k]
achieves a mean value of mr = 0.666 with a variance of
σ2
r = 0.426.

C. Recorded data
Figure 3 illustrates the experimental setup using recorded data.
As for synthesized data, P = 10 microphones are placed
in a recording room of dimensions 6.26 m × 4.86 m × 3 m
with a reverberation time of T60 ≈ 320 ms. The microphones
are arranged in five pairs with inter-microphone distance 4 cm
placed on a quarter circle of 2 m radius around a loudspeaker
representing the SoI. The loudspeaker and the microphones
are located in a horizontal plane at a height of 1.17 m. To
replicate a realistic scenario with physical obstacles, solid
wooden panels 1 m wide and 2 m high are placed between
the microphones and the loudspeaker, thereby suppressing
the direct-path contribution in the corresponding microphone
signal. The SoI signal consists of 51 s of speech, which is split
uniformly into three segments of 17 s duration. During each
segment, the corresponding obstacle is present while the other
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Fig. 4: Pearson correlation coefficient r[k] between Fiedler and
MSC vectors for recorded data. Dashed lines indicate changes
of the obstruction’s position.

obstacles are absent, i. e., in segment 1 (0 s–17 s) only obstacle
1 is present, etc. Three trials, each with a different signal
(adult male speech, adult female speech, children’s speech),
are conducted. As for the synthesized data, white Gaussian
noise is added to the microphone channels to obtain a long-
term SNR of 10 dB at the microphone with the strongest
SoI source image. Since all microphones are facing the SoI,
the SNR varies less between microphones relative to the
scenario with synthesized data above. As a result, the evoked
signal features for the Fiedler vector computation as well as
the signal entropy for resolving the sign ambiguity are less
discriminative. Therefore, a performance degradation relative
to the previous experiment must be expected.

Figure 4 shows r[k] over time for the three different
excitation signals. Performance is best for children’s speech
consistently achieving values of r[k] > 0.8 and re-converging
almost instantly when the position of the obstacle changes. For
female speech, re-convergence after the obstruction changes
position takes around 2 s–3 s. Although the performance during
the second and third segment is high, there are problems in the
second half of the first segment. For male speech, although the
Fiedler vector is estimated accurately, the proposed algorithm
struggles with resolving the sign ambiguity of the Fiedler
vector as indicated by the rapid sign changes of r[k] in the
first two segments.

IV. CONCLUSION

In this contribution, we expanded our prior work in [10], [11]
to facilitate online estimation of the microphone utility in time-
variant scenarios, which constitutes a highly relevant practical
problem in WASNs. For an efficient online implementation, we
introduced a KF formulation to recursively estimate feature
correlation coefficients and introduced recursive updates for
the similarity vector of each microphone channel. Further-
more, we proposed an improved approach to robustly resolve
the sign ambiguity of the Fiedler vector based on the entropy
of the recorded microphone signals. Experiments using syn-
thesized and recorded data demonstrated the efficacy of the
proposed method for tracking time-varying microphone utility
in realistic acoustic conditions.

Future work includes verifying the practical efficacy of the
proposed microphone ranking approach for different classes
of online signal processing algorithms such as multichannel
signal enhancement and localization of acoustic sources. Fur-
ther improvements to even more robustly resolve the sign
ambiguity of the Fiedler vector in realistic scenarios presents
another research direction of considerable practical interest.
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