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Abstract—In this paper, we propose a new variant of sampling
frequency mismatch (SFM) estimation based on double-cross-
correlation processor (DXCP) by an auxiliary function method.
SFM estimation is one of the key problems in signal processing
on asynchronous microphone arrays. Previously, a DXCP was
proposed for obtaining an accurate and robust SFM estimate.
The DXCP estimates the SFM by maximizing a cross-correlation
(CC) function, where parabolic interpolation is employed to
attain the sub-sample time delay (STD) estimate between two
observed signals. While, we previously proposed a highly accurate
technique of STD estimation based on the auxiliary function
method, which reaches a local maximum of a CC function,
achieving a better result than the parabolic interpolation. In
this paper, we thus extend the DXCP using our approach of
STD estimation to improve the performance of SFM estimation.
In experiments, we confirm that the proposed method shows
a monotonic increase in objective function in the DXCP and
achieves better performance than the original DXCP.

Index Terms—sampling frequency mismatch, cross-correlation,
auxiliary function, majorization–minimization

I. INTRODUCTION

Microphone array signal processing realizes fundamental

techniques such as sound source separation [1], [2] and source

localization [3], [4]. These techniques, developed with an

asynchronous distributed microphone array (ADMA) [5], are

expected to improve the convenience and scope of application

for audio technologies such as automatic speech recognition

and acoustic scene classification systems. Many recording

devices placed widely apart provide large-scale spatial infor-

mation, which may also profit signal processing techniques

exploiting spatial cues, i.e., time difference of arrival and

variations in amplitudes.
One of the essential problems in ADMAs is sampling fre-

quency mismatch (SFM) among individual recording devices.

Traditional array signal processing is performed under the

assumption that observed signals are completely synchronized;

in other words, all microphones are installed on an identical

A/D converter for sampling signals under exactly matched

sensor clocks. However, in the case of using different devices,

SFMs can exist among them, that will make the performance

of the array signal processing degrade significantly. Therefore,

the amount of SFM must be estimated in advance and com-

pensated for post-stage processes.
Most techniques of SFM estimation are based on the

maximization of a cross-correlation (CC) function between a

reference signal and the signal to be compensated [6], [7].

A double-cross-correlation processor (DXCP) has recently

been proposed for accurate and robust SFM estimation [8].

It shows notable performance compared with conventional

SFM estimation [9]. In these techniques, there is a trade-off

between estimation accuracy and computational complexity

in the maximization of the CC. In general, the CC between

two discrete signals is computed at every integer time de-

lay, but its accuracy is insufficient for many applications,

including SFM estimation. For attaining a sub-sample time

delay (STD) estimate, several variations of interpolation have

been proposed, such as parabolic interpolation [10], Gaussian

curve fitting [11], and others [12]–[15]. In addition, it is

possible to try to find the maximum of the continuous CC

function directly. Following the Nyquist–Shannon sampling

theorem [16], the continuous CC can be considered for band-

limited signals. However, its maximization is a nonconvex

problem, making it difficult to obtain the optimal solution. To

estimate it, Miyabe et al. [6] and Wang and Doclo [7] used the

golden-section search algorithm [17] and an exhaustive search

scheme, respectively.
In contrast, we previously proposed a technique of maximiz-

ing a continuous CC via the auxiliary-function-based iterative

updates for STD estimation [18]. Theoretically, this technique

yields the same estimate as exhaustive search, but the com-

putational cost is markedly low owing to efficient updates.

Thus, in this study, we adapt this technique to the DXCP-

based SFM estimation, which uses parabolic interpolation for

CC maximization, to improve the estimation accuracy.
We conducted numerical experiments and confirmed the

efficacy of the proposed method.

II. SAMPLING FREQUENCY MISMATCH ESTIMATION

A. Problem formulation

In this study, we consider estimating an SFM between two

different microphones, i.e., the observed signals sampled by

distinct A/D converters. Here, we assume two conditions: the

sampling frequencies of these microphones almost match (the

nominal value is the same or they are already resampled)

and the sound source does not move. In a typical situation

in ADMAs, the positions of microphones and sources are

unknown. Therefore, we must estimate an SFM using only

the observed signals.
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(a) First CC. (b) Normalized second CC.

Fig. 1: Examples of the first and second CCs in DXCP for

simulated signal with time-invariant SFM, where M = 2× fs
and B = 1× fs.

Let x̃1(t) and x̃2(t) be continuous signals observed by

the microphones, and x1(n1) and x2(n2) be discrete signals

sampled at unknown sampling frequencies fs1 and fs2 , re-

spectively, where t denotes a continuous time variable and n1

and n2 denote sample indices. Without loss of generality, we

consider x1(n1) as a reference signal and represent its sam-

pling frequency as fs (i.e., fs = fs1 ). Then, the relationships

between the continuous and discrete signals are

x1(n1) = x̃1

(

n1

fs

)

, (1)

x2(n2) = x̃2

(

n2

(1 + ϵ)fs
+∆T21

)

, (2)

where ∆T21 denotes the delay of the recording start time of

x̃2(t) with respect to x̃1(t) and can be more than several

seconds. In this paper, we consider that ∆T21 is estimated

and compensated sufficiently using a technique such as that

proposed in [6]. ϵ represents the unknown SFM, defined as

ϵ =
fs1
fs2
− 1, (3)

where we assume that ϵ is time-invariant. Under this assump-

tion, we can consider the linear phase drift model [6], which

means that the phase difference between two signals changes

linearly with time. Now, our goal is to estimate SFM ϵ from

the observed signals.

B. Double-cross-correlation processor

In this section, we briefly introduce a DXCP [8]. The use

of CC is typical in estimating an SFM in existing studies such

as [6] and [7], while Chinaev et al. [8] addressed the consid-

eration of the CC between the CCs of the two observations,

namely, the double-cross-correlation (DXC). First, we perform

windowed frame analysis as

xi,ℓ(m) = w(m) xi((ℓ− 1)B +m− 1), (4)

where i ∈ 1, 2 denotes the microphone index, ℓ = 1, . . . , L
denotes the frame index, and m denotes the sample index in

each frame. w(m) is an analysis window that takes a real value

for m = 1, . . . ,M and 0 for the other m, and B represents

the frame shift length. Then, the CC ϕ(ℓ, v) of the windowed

signals is defined as

ϕ(ℓ, v) =

M
∑

m=1

x1,ℓ(m) x2,ℓ(m+ v), (5)

where v ∈ {−Γ, . . . ,Γ} and 0 < Γ ≤ M − 1 denotes a lag

index. In this paper, we call ϕ(ℓ, v) the first CC. An example

of the first CC is shown in Fig. 1(a). We can see that the lag v
that maximizes the first CC increases linearly with the frame

index ℓ, which demonstrates the linear phase drift model [6].

We consider a second CC ψ(ℓ, λ) defined as

ψ(ℓ, λ) =
Γ
∑

v=−Γ

ϕ(ℓ, v) ϕ(ℓ− 1, v + λ), (6)

where λ ∈ {−Λ, . . . ,Λ} and 0 < Λ ≤ 2Γ is a lag index with

ℓ ≥ 2. The second CC is the CC between the first CCs at

the ℓth and (ℓ − 1)th frames. After process (6), the second

CC is normalized with respect to the maximum value and is

averaged across all past frames. An example of the second CC

is shown in Fig. 1(b). In accordance with this figure, a clear

peak at a certain lag can be seen for all frames, whereas the

peak positions drifted with time in the first CC, as shown

in Fig. 1(a). As a result, the DXCP achieves robust SFM

estimation by using the second CC.

Finally, the SFM estimate ϵ̂ is obtained by maximizing the

second CC ψ(ℓ, λ) in the last frame L as follows:

λ̂d(L) = argmax
λ

ψ(L, λ), (7)

ϵ̂ =
λ̂s(L)

B
, (8)

where λd and λs denote discrete and sub-sample lag estimates,

respectively. In the original DXCP, it was proposed that λs is

estimated via parabolic interpolation, i.e., λs corresponds to

the vertex of the following quadratic function:

f(λ) = aλ2 + bλ+ c, (9)

where the coefficients a, b, and c of the quadratic function

f(λ) are determined by the three neighboring points λ̂d(L)−1,

λ̂d(L), and λ̂d(L) + 1. By using the vertex of the quadratic

function instead of the integer lag estimate λd, we can obtain

better estimates, as shown in Fig. 2(a).

C. Discussion for better estimation with DXCP

Chinaev et al. [8] reported that the accuracy of the SFM

estimate ϵ̂ via the DXCP strongly depends on the window

length M . The optimum M was 10 s in their experiments [8].

A larger or smaller frame length degrades performance. The

reason for this degradation can be as follows: in the case of a

smaller frame length, the lag between two windowed frames

becomes larger relative to the frame length; thus, the two

frames do not match. In the case of a larger frame length,

the time variation of the lag within a frame becomes non-

negligible. Both cases decrease the correlation between two

frames. Because discussion about the degradation due to this

reason is not within the scope of this paper, please refer to [6],

[7] for details.
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(a) Parabolic interpolation (b) Proposed method

Fig. 2: Examples of CC maximization via (a) parabolic in-

terpolation with three neighboring points and (b) proposed

auxiliary-function-based iterative updates. The CC function

was calculated for every 0.001 samples for smooth plotting.

Another reason for the performance dependence on the

frame length is that the frame length affects the accuracy of

peak estimation in DXCP. In this paper, we focus on how to

attain the peak. Since the CC between two discrete signals is

typically computed at every discrete lag index, the accuracy

depends on the sampling frequency and the frame length M . In

the original DXCP [8], the use of parabolic interpolation [10]

in the vicinity of the maximum of the second CC to estimate

the STD, which is an approximate solution (see Fig. 2(a)),

has been proposed. The computational cost of this approach

is low; however, the accuracy still depends on the sampling

frequency. In contrast, we previously proposed the auxiliary-

function-based approach to maximize a CC [18]. We thus

adopt this approach to the DXCP to improve the estimation

accuracy.
Other means to improve the SFM accuracy include the

sharpening of the peak of CC using generalized cross-

correlation phase transform (GCC-PHAT) [19], [20] and

performing SFM estimation and signal compensation itera-

tively [7], [8], [21]. The combination of such extensions and

the proposed method in this paper will be considered in the

future.

III. MAXIMIZATION OF CROSS-CORRELATION FUNCTION

VIA AUXILIARY-FUNCTION-BASED ITERATIVE UPDATING

In this section, we explain the technique of maximizing the

second CC by the auxiliary function method. In subsections

III-A–III-D, we briefly introduce the auxiliary-function-based

STD estimation for completeness, proposed in [18].

A. Problem formulation

First, for discrete signals x1(n1) and x2(n2), we assume

that the effect of an SFM can be ignored in a short-time

frame and that n = n1 = n2. The second CC ψ(L, λ)
(hereafter, we omit the index L for simplicity) is represented

as the sum of complex sinusoids using the discrete Fourier

transform (DFT) coefficients. We here assume that signals

x1(n1) and x2(n2) are strictly band-limited and follow the

Nyquist–Shannon sampling theorem [16]. Then, the discrete

lag λ can be replaced by the continuous lag t ∈ R, and the

second CC can be rewritten as

ψ(t) =
1

N

Λ
∑

k=−Λ

Ske
j2πkt/N , (10)

where N = 2Λ + 1 is the length of ψ(λ) (N = 4M − 3
at maximum), k denotes a discrete frequency index, and Sk

is the DFT of ψ(λ), i.e., the cross-spectrum of the first CCs

ϕ(ℓ) and ϕ(ℓ − 1). Note that ψ(t) = ψ(λd) when t is an

integer. We consider finding the continuous time variable t ∈
R maximizing the continuous function (10). It can be rewritten

as a sum of cosines using the conjugate symmetry of Sk,

ψ(t) =

Λ
∑

k=0

Ak cos(ωkt+ ϕk), (11)

where Ak = βk

N |Sk|, ωk = 2π k
N , ϕk = ∠Sk and β0 = 1 and

βk = 2 (k ̸= 0). Our goal is to compute the sub-sample lag

estimate

t̂ = argmax
t∈R

ψ(t). (12)

B. Proposed sub-sample time delay estimation

The auxiliary function method (also known as the

majorization-minimization (MM) algorithm [22]) is a well-

known method, and various application have been pro-

posed [23]–[25]. In our problem, an auxiliary function Q(t,θ)
that satisfies the following is required:

• ψ(t) ≥ Q(t,θ) for any t and θ,

• for any t, ∃θ = g(t) such that ψ(t) = Q(t,θ),

where θ = (θ0, θ1, · · · , θN/2) are auxiliary variables. Provided

such a Q(t,θ) exists, and given an initial estimate t̂(0), the

following sequence of updates with the iteration index q is

guaranteed to converge to a local maximum:

θ
(q) = g(t̂(q)), t̂(q+1) = argmax

t∈R

Q(t(q),θ(q)). (13)

C. Quadratic auxiliary function for continuous cross-

correlation function

This section provides an auxiliary function for ψ(t) [18].

Theorem 1. The following is an auxiliary function for ψ(t),

Q(t,θ)=

N/2
∑

k=0

{

−
Ak

2

sin θk
θk

(ωkt+ ϕk + 2nkπ)
2+Ck

}

, (14)

where Ck is a constant term that does not include t and nk ∈
Z is such that |ωkt+ϕk+2nkπ| ≤ π. The auxiliary variables

are θk and nk, then Q(t,θ) = ψ(t) when

θk = ωkt+ ϕk + 2nkπ. (15)

This theorem is a direct consequence of the following

inequality for a cosine function [18].

Proposition 1. Let |θ0| ≤ π. For any real number θ, the

following inequality is satisfied:

cos θ ≥ −
1

2

sin θ0
θ0

θ2 +

(

cos θ0 +
1

2
θ0 sin θ0

)

. (16)

When |θ0| < π, equality holds if and only if |θ| = |θ0|. When

|θ0| = π, equality holds if and only if θ = (2n+ 1)π, n ∈ Z.

Proof of theorem 1 and proposition 1 are detailed in [18].
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D. Derivation of auxiliary function and update rules

Since Q(t,θ) is a quadratic function, it is easily maximized

with respect to t by putting its derivative to zero:

∂Q

∂t
= −

N/2
∑

k=0

Akωk
sin θk
θk

(ωkt+ ϕk + 2nkπ) = 0. (17)

Then, under the condition of equality (15), we can substitute

ϕk +2nkπ = θk −ωkt and obtain the following update rules:

n
(q)
k ← argmin

n∈Z

∣

∣

∣
ωkt

(q) + ϕk + 2nπ
∣

∣

∣
, (18)

θ
(q)
k ← ωkt

(q) + ϕk + 2n
(q)
k π, k = 0, . . . ,

N

2
, (19)

t(q+1) ← t(q) −

∑N/2
k=0Akω

2
k

(

sin θ
(q)
k /θ

(q)
k

)

θ
(q)
k

ωk

∑N/2
k=0Akω2

k

(

sin θ
(q)
k /θ

(q)
k

) . (20)

E. Adaptation for DXCP

To use our approach in the postprocessing of the DXCP,

we have two choices in selecting the initial estimate t(0). The

first one uses the discrete lag index that maximizes the second

CC, i.e., the result of (7). The second one is the parabolic

interpolation, which is the original method proposed in [8].

Basically, the better initial estimate leads to faster convergence,

while the convergence point is the same owing to the property

of the auxiliary function method. With the initial estimate

t(0), we can obtain the final sub-sample precision lag estimate

t̂ = λ̂s by iteratively updating the lag estimate and auxiliary

variables using (18)–(20), where λ̂s maximizes the objective

function (11). Finally, we compute (8) with t̂ to obtain the

SFM estimate.

IV. EXPERIMENTAL EVALUATION

To evaluate the efficacy of the proposed method, we in-

vestigated the performance of SFM estimation in terms of

the convergence, as described in subsection IV-A, and the

estimation accuracy, as described in subsection IV-B. In these

experiments, we used microphone 1 as the reference micro-

phone with a sampling rate of 16 kHz. Then, we estimated the

unknown sampling frequency at microphone 2. For analysis

window length M , we tested 12 variations, namely, 0.01, 0.02,

0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 15, and 20 s. Window shift

length B was set to half of M . We used a Hann window for

the windowed framing.

A. Convergence

In this experiment, we used Japanese male speech sampled

at 16 000Hz as a source signal. The signal of microphone 2
was resampled at 16 010Hz, which is an unrealistic scenario,

and was simulated merely for verifying the convergence in

this experiment. The initial estimate t(0) used in the proposed

method was a discrete sample that maximizes the second CC.

We show the convergence of the objective function over frame

length and initial estimates in Figs. 3 and 4, respectively.

Fig. 3 indicates that the proposed method shows the mono-

tonic increase in the objective function for any frame length.

Empirically, when the frame length is large, the objective

function exhibits a gentle curvature. Therefore, the proposed
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Fig. 4: Objective function (second CC) and state of its conver-

gence for the initial estimates t(0) of every 10 samples. Each

circle represents the position of the initial estimate , where the

leftmost circle corresponds to the discrete lag maximizing the

objective function.

method requires more iterations for convergence, but a better

SFM estimate is obtained, as discussed in the next section.

Conversely, the small frame length causes an acute peak of

the second CC, which leads to faster convergence. Note that

the shape and range of the objective function vary depending

on the frame length. Thus, to align the range and display all

curves in these two figures, we normalized the value of the

objective function at each iteration so that the value at the last

20th iteration becomes one.
Fig. 4 shows that the proposed method with arbitrary initial

estimates converged to the local maximum, when the frame

length was 10 s. We can confirm that the proposed method

reaches the global maximum by selecting the initial estimate

from the unimodal period containing the global maximum.

Even if the initial estimate is outside that unimodal period,

convergence to the local maximum is guaranteed. This is one

of the essential properties of the auxiliary function method.

The better the initial estimate, the faster the convergence is.

B. Estimation accuracy

We used eight types of sound source, namely, two sam-

ples of male/female Japanese/English speeches, with a signal

length of 25 s. The signal at microphone 2 was resampled

by the accurate sinc-interpolation with a given SFM ϵ. ϵ was

randomly selected from a Gaussian distribution N (µ, σ2) with

variance σ2 = 31.252 ppm and mean µ, where µ = 62.5 ppm

was used for half of the data and µ = −62.5 ppm for the
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remaining. Note that ϵ between signals sampled at 16 000Hz
and 16 001Hz is 62.5 ppm. In this experiment, we used the

DXCP with three types of postprocessing. “Naive” represents

the DXCP with no postprocessing, that is, the estimate is a dis-

crete sample maximizing the discrete second CC. “Parabolic”

represents the original DXCP using parabolic interpolation.

Finally, “Proposed” corresponds to the proposed method, i.e.,

the DXCP with auxiliary-function-based CC maximization.

The number of iteration was 20.

Fig. 5 shows the estimation error of SFM. The horizontal

axis shows the frame length, and the vertical axis shows

the root mean square error (RMSE) between the sampling

frequencies at microphone 2 (fs2 ) and its estimate (f̂s2 ),

where fs2 and f̂s2 were computed using the given ϵ and

the ϵ estimated by using (3), respectively. The large frame

length shows better RMSE than the small frame length because

of the computation of ϵ in (8). The large B reduces the

effect of error in the lag estimation (the maximization of

the second CC). Thus, all methods attain almost the same

performance as the frame length increases. The best accuracy

is obtained when the window length is 10 s, where the RMSE

is 0.067 52Hz, and the error of SFM is 4.22 ppm. When the

frame length is relatively small, the performance of “Naive”

and the original DXCP decreases. In contrast, the proposed

method still achieves the highest performance. This means that

the proposed method yields a better solution for maximizing

the second CC. In accordance with Fig. 5, the original DXCP

requires a frame length of at least 0.5 s to obtain a better

estimate. On the other hand, the proposed method requires

a frame length of about 0.05 s to attain almost the same

performance, which improves the practicality of the DXCP.

From the above results, we confirmed the efficacy of the

proposed method for SFM estimation.

V. CONCLUSIONS

In this paper, we present an efficient method for improving

the DXCP-based SFM estimation. We demonstrate that the

second CC can be lower-bounded at any point by the proposed

auxiliary function. We then apply the auxiliary-function-based

STD estimation, instead of the parabolic interpolation, for

maximizing the second CC as postprocessing of DXCP. In

the experiments, we confirmed that the proposed method

converges to a local maximum with arbitrary initial estimates

and achieves a better SFM estimate. In particular, the proposed

method shows significant improvement for a small frame

length, improving the practicality of the DXCP.

REFERENCES

[1] S. Makino, T.-W. Lee, and H. Sawada, Blind Speech Separation.
Springer, 2007.

[2] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari, “De-
termined blind source separation unifying independent vector analysis
and nonnegative matrix fuctorization,” IEEE/ACM Trans. ASLP, vol. 24,
no. 9, pp. 1626–1641, 2016.

[3] A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source
localization problems,” Signal Process., vol. 56, no. 5, pp. 1770–1778,
Apr. 2008.

[4] T.-K. Le and N. Ono, “Closed-form and near closed-form solutions
for TDOA-based joint source and sensor localization,” Signal Process.,
vol. 65, no. 5, pp. 1207–1221, Dec. 2016.

[5] A. Bertrand, “Applications and trends in wireless acoustic sensor net-
works: A signal processing perspective,” in Proc. SCVT, pp. 1–6, 2011.

[6] S. Miyabe, N. Ono, and S. Makino, “Blind compensation of interchannel
sampling frequency mismatch for ad hoc microphone array based on
maximum likelihood estimation,” Signal Process., vol. 107, pp. 185–
196, Feb. 2015.

[7] L. Wang and S. Doclo, “Correlation maximization-based sampling rate
offset estimation for distributed microphone arrays,” IEEE/ACM Trans.
ASLP, vol. 24, no. 3, pp. 571–582, 2016.
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