
A Coherence-based Clustering Method for
Multichannel Speech Enhancement in Wireless

Acoustic Sensor Networks
Antonio J. Muñoz-Montoro
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Abstract—Speech enhancement constitutes a great challenge in
unknown noisy environments. Many studies have addressed this
problem for both single-channel and centralized multichannel
cases. However, in a real-world scenario, the effect of the rever-
beration and interference sounds degrades the performance of the
state-of-the-art methods. In this sense, speech and signal process-
ing with wireless acoustic sensor networks (WASNs) is becoming
more and more popular, since they are able to physically cover a
larger space and capture more spatial information mitigating
the effect of the reverberation and the interference. In this
paper, we present an unsupervised clustering method to cluster
the nodes in a WASN into subnetworks, which detect different
speakers. Thus, each subnetwork will be interested in detecting
one of the multiple speakers in the acoustic scene. The proposed
node clustering is based on the estimation of the magnitude-
squared coherence between microphones observations, which
measures the degree of their linear dependency. Then, a non-
negative matrix factorization (NMF) based approach is developed
and applied to find the optimal clustering. Simulation results
show that the proposed clustering method can assign nodes into
subnetworks based on the microphones observations obtaining
promising results.

Index Terms—WASN, node clustering, coherence, NMF, accu-
racy, confusion matrix

I. INTRODUCTION

Multichannel signals are typically recorded by using mi-
crophone arrays. This enables to exploit spatial diversity and
allows to localize target sound sources and/or to cancel out
interfering sound sources coming from certain directions [1]–
[3]. Several application using microphone arrays can be found
in the literature, e.g., automatic speech recognition, hearing
aids, computer games, teleconferencing systems, hands-free
telephony, etc.

Conventional microphone arrays have limitations and pro-
vide a low performance in certain contexts [4], [5]. Such arrays
only sample the sound field locally and often at a relatively
large distance from the target sources. Moreover, in the case
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of portable devices, these systems are limited by space and
power constraints.

As an alternative, wireless acoustic sensor networks
(WASNs) provide many advantages. A WASN is comprised
by several acoustic nodes, where each node can be formed by
a single microphone or by a conventional microphone array.
These nodes are randomly placed in the acoustic environment
and are interconnected in an ad hoc fashion, providing a
great scalability and versatility. This allows them to physically
cover a much larger area, which increases the probability to
have a subset of microphones close to target sound sources,
obtaining higher quality recordings. In addition, note that the
size limitations of the arrays are relaxed because of wireless
interconnection. Due to these benefits, WASNs has become in
an emerging topic that has attracted much attention from the
signal processing community [5], [6].

For the design of audio signal processing applications in
WASNs, two different network topologies can be exploited,
i.e., centralized and distributed. The former assumes that
the information of all nodes compounding the network is
accesible at one central node. In this case, optimal solutions
can be obtained by managing this information properly. On
the other hand, the distributed methods process signals locally
in each node, without the requirement of a fusion center.
Thus, the large communication bandwidth requirements and
the long distance communication are reduced as every node
only needs to communicate and exchange information with its
neighbors [4], [5]. Moreover, the distributed topology allows to
distribute the computational burden over the WASN, reducing
the amount of data processing as in a fusion center with a
centralized method [4].

Several methods in the literature have addressed both
centralized and distributed approaches for different tasks.
Souden et al. [7] proposed a multichannel noise tracking
method to estimate the multichannel speech presence probabil-
ity. The experimentation revealed that the speech detection per-
formance improves when the microphone number increases.
Note that the proposed system only operates in a centralized
manner. Although the obtained results were promising, the
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conclusion was that the noise tracking method requires a care-
ful initialization. Following this work, Taseska and Habets [8]
applied the multichannel noise tracking method to sound ex-
traction by using distributed microphone arrays. Nevertheless,
the proposal is still a centralized solution. Bahari et al. [9]
used WASNs for the multi-speaker voice activity detection
(VAD) problem. The authors proposed to form node clusters
and compute the VAD for different speakers at each cluster.
However, the proposed method presents a high computational
burden, since the distributed eigenvalue decomposition (EVD)
is required to obtain the node clusters. In [10], the authors
developed a node clustering method based on the fuzzy c-
Means algorithm. This method was subsequently used for
source separation in ad hoc multichannel arrays [11]. A
topology-independent distributed adaptive node-specific signal
estimation algorithm was introduced in [12]. In this method,
each node of the WASN is tasked with estimating a node-
specific desired signal. The obtained results showed a robust
behavior in the face of topology and scalability changes of
the network. More recently, [5] developed a centralized and
distributed model-based node clustering method based on the
k-means algorithm to estimate the speech presence probability.
The method clusters the nodes in the WASN so the entire
network is divided into subnetworks. Each subnetwork is
interested in detecting one of the multiple speakers in the
acoustic scene.

WASNs have been also used for the particular case of sound
field control applications, and more specifically for Active
Noise Control (ANC) [13], [14]. Preliminary results showed
that incorporating clustering strategies allows to improve the
performance of algorithms developed in this field [15].

In this work, we propose an unsupervised clustering method
for WASNs. We propose to use coherence between micro-
phones observations to divide the WASN into subnetworks
that detect different speakers. The magnitude-squared co-
herence measures the degree of the linear dependency of
the microphones observations by analyzing similar frequency
components. Subsequently, a non-negative matrix factorization
(NMF) approach is applied, taking advantage of the clustering
property inherent to this technique. In the end, the proposed
method allows to perform the clustering dynamically with a
very low computational burden, which makes it suitable for a
multitude of audio signal processing applications.

The rest of this paper is organized as follows. Section II
presents the signal model and the problem formulation. Sec-
tion III discusses the proposed node clustering method. Sec-
tion IV presents the experimentation and obtained results.
Finally, conclusions are presented in Section V.

II. PROBLEM FORMULATION

The problem considered in this work is to cluster M
microphones, randomly deployed in a room environment, into
K clusters or subnetworks. Thus, each subnetwork will be fo-
cused on detecting one of the K speakers in the acoustic scene.
Note that here each node in the WASN is a single microphone.
Fig. 1 illustrates the problem for a simple network.

Acoustic scene

Fig. 1: A WASN of 13 nodes divided in 3 clusters. Each
white circle represents a node and each diamond represents
a speaker.

The observed signal xm(t) at the m-th microphone and time
instant t can be expressed as

xm(t) = sm(t) + vm(t), (1)

where sm(t) is the clean speech and vm(t) is the noise signal
plus interference. Collecting a frame of observation signal
samples into a vector form, the linear signal model in (1) can
be reformulated as

xm(t) = [xm(t)xm(t− 1) . . . xm(t− T + 1)]
T

= sm(t) + vm(t), (2)

where T denotes the frame size and the superscript T refers to
the matrix transpose. Note that sm(t) and vm(t) are defined
similarly to xm(t) and denote the clean speech and noise
signal vectors, respectively.

III. PROPOSED CLUSTERING ALGORITHM

The proposed clustering method consists in two steps. The
first step is to compute the magnitude-squared coherence
between microphones observations in order to measure the
degree of their linear dependency. Then, NMF is applied over
the coherence process output to find the optimal clustering.

A. Spectral magnitude-squared coherence measure

The magnitude-squared coherence is a statistic that can be
used to analyze the linear relationship between two audio
signals x(t) and y(t) [16]. This statistic can be obtained by
computing the fast Fourier transform (FFT) of both signals,
and then by measuring coherence as a function of the cen-
ter frequency of the filter. Therefore, the magnitude-squared
coherence can be obtained as a frequency dependent function
using:

Γxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
, (3)
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where Sxy(f) is the cross spectral density (CSD), which is
really a spectral correlation density. The CSD can be computed
as

Sxy(f) =

T−1∑
k=1−T

Rxy(k)e−i2πfk, (4)

where Rxy(k) is the cross correlation function between x(t)
and y(t) and T denotes the frame size. Note that here multiple
short-time Fourier transform are averaged. Likewise, this cross
correlation can be estimated by

Rxy(k) =

{
1
T

∑T−1−k
0 x(t)y(t+ k) k = 0, . . . , T − 1

Rxy(−k) k = −(T − 1), . . . ,−1.
(5)

The coherence measure is a statistical indicator which indi-
cates how two signals are correlated. Note that Γxy(f) ∈ [0, 1],
where the value 1 indicates a perfectly linear relationship
between both signals, and the value 0 indicates a complete
lack of correlation. The magnitude-squared coherence in (3)
can be used to measure the correlation between all the signals
captured by the WASN microphones. In order to consider the
same weight to all frequency bins regardless of their power,
we propose to compute the following coherence metric,

Cxy =

∑F
f=0 Γxy(f)

F
∈ [0, 1]. (6)

Finally, arranging all the coherence measures between the
audio observations, a non-negative symmetric coherence ma-
trix C ∈ RM×M

+ can be obtained as,

C =


1 · · · · · · C1M

C12 1 · · · C2M

...
...

. . .
...

C1M C2M · · · 1

 , (7)

B. NMF-based model for clustering coherence observations

Here, we will briefly review the proposed NMF analysis
applied over the coherence matrix C to obtain the optimal
clusters.

Firstly, let us analyze the information contained in C.
The j-th row (or column) of C represents the degree of
correlation between the audio observation captured by the
j-th microphone and the rest of M observations. This way,
the microphones which are closest to a specific source are
highly correlated. Mathematically, C can be considered as a
linear subspace of dimension M . Thus, the clustering process
consists in downgrading this subspace into a linear subspace
of dimension K. This may be achieved by taking into account
the inherent clustering property of the NMF [17]. In addition,
note that the NMF is well-suited because of the non-negativity
of the coherence matrix.

For the NMF analysis, the non-negative symmetric coher-
ence matrix C can be modeled as

C = BBT � (1− I) + I (8)
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Fig. 2: Example of microphone clustering based on NMF. The
number of clusters is 3 and the number of microphones is 10.
The red rectangles indicate the microphones assigned to the
first cluster.

where the � denotes the Hadamard product. B ∈ RM×K
+

is the cluster matrix, I ∈ NM×M is an identity matrix and
1 ∈ NM×M is an all-ones matrix. Let us explain the model in
(8). Due to the symmetric property of C, the proper way to
model it is by BBT. However, the main diagonal of C does
not provide any relevant information in the learning process
of B. This is why we introduce I and (1− I).

Based on Euclidean divergence, B can be estimated using
iterative multiplicative update rules [18]:

B← B� (C� (1− I))B

(BBT � (1− I))B
(9)

Note that the division is element-wise division operation.
For the clustering application, the columns of the cluster

matrix B contain the contribution of each microphone to each
cluster. The clustering result is then obtained by

γm = {j ∈ [1,K] : bmj ≥ bmk,∀k ∈ [1,K]}, (10)

where γm denotes the cluster assigned to the m-th microphone
and bmk is the (m, k) entry of the matrix B.

Fig. 2 shows an example of microphone clustering using
the proposed NMF strategy. In this example, the objective is
to cluster ten microphones into three subnetworks that are
focused on three speakers. As can be observed in Fig. 2a,
the column-vectors of the 3rd, 4th, 5th and 9th microphones
keep a high correlation. Fig. 2b shows how this correlation has
been identified by the NMF and how these microphones have
been assigned to the 1st cluster. Therefore, we can assume
that these microphones are close to the same speaker.

The node clustering method is summarized in Algorithm 1.

IV. EVALUATION AND RESULTS

In this section, simulations are performed to show the
performance of the proposed clustering method in simulated
room acoustic environments.

A. Experimental Setup

The experimental evaluation was carried out using a
database compounded by speech signals taken from the
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Algorithm 1 Proposed clustering method

1: for i = 1 to M do
2: for j = i to M do
3: Compute the cross correlation Rxixj

(k) using (5).
4: Compute the CSD Sxixj (f) using (4).
5: Obtain the coherence measure Γxixj (f) using (3).
6: Compute the coherence metric Cxixj

using (6).
7: end for
8: end for
9: Initialize B with random values.

10: for iters = 1 to MaxIter do
11: Update B according to (9).
12: end for
13: Obtain the optimal clustering by (10).

CHiME corpus [19] and noise signals extracted from the
AURORA database [20]. The noise signals include babble,
restaurant, exhibition noise, street and station noise. This
background noise was applied equally to all microphones with
SNR = 10 dB. Note that all the signals are downsampled to
8 kHz. The time-frequency representation is obtained using
2048-point STFT, and the frame size and the hop size for
the STFT are set to 512 (64 ms) and 64 (8 ms) samples,
respectively. We have simulated different mixing conditions
using the image source model method [21] for a rectangular
room of dimensions 10 m × 10 m × 3 m. Room impulse
responses (RIR) were generated for reverberation times (T60)
of 200 ms and 400 ms, which provides moderate reverberation
environments. We have simulated 50 nodes (microphones)
randomly placed in the room, where the maximum distance
was set to 2.5 m between them. Three speakers were located
at (8, 8, 1.5) m, (6, 2, 1.5) m and (3, 6, 1.5) m, respectively.
The speech signals are scaled to have the same power before
convolving with the RIRs.

For a quantitative evaluation of the reliability of our cluster-
ing method, we have used the accuracy metrics Acc(%), which
can be defined as the percentage of microphones correctly
assigned to their respective clusters. In this regard, the ground
truth (GT) is computed from the RIR as

γGT
m = {j ∈ [1,K] : σmj ≥ σmk,∀k ∈ [1,K]}, (11)

where σmk =
√∑

t h
2
mk(t), being hmk(t) the spatial room

impulse response of the speaker k captured by the microphone
m. The GT gives us a measure to evaluate the reliability of
the clustering procedure over the evaluated dataset.

We have also compared our proposal with the k-means-
based clustering method presented in [5]. This method com-
putes the clustering by initializing the algorithm with K
cluster centers first. The authors use a feature bm obtained
by computing the Itakura-Saito (IS) divergence between the
observation periodograms and a pretrained codebook of speech
and noise AR models. The clustering result is then obtained
by iterating between the following two steps: (1) feature bm
is assigned to its nearest cluster center ck and (2) the cluster
center ck is then recomputed as the means of the data which
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Fig. 3: Confusion matrices for the proposed method, obtained
from the evaluation dataset for a reverberation time of T60 =
200 ms. The number of clusters is 3 and the total number of
microphones is 50.
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Fig. 4: Confusion matrices for the proposed method, obtained
from the evaluation dataset for a reverberation time of T60 =
400 ms. The number of clusters is 3 and the total number of
microphones is 50.

is assigned to the k-th cluster. Iterating between step (1) and
step (2) until convergence gives the final clustering result.

B. Results

Fig. 3 and Fig. 4 show the confusion matrices for mixtures
generated by using different types of background noise. For
the problem described in this paper, the optimal number of
clusters corresponds to the number of sources in the acoustic
environment. In order to determine this number, we propose
to use the variance ratio criterion (VRC) strategy as in [5]. In
this case, the number of speakers is three and, therefore, three
subnetworks are formed. Fig. 3 displays the clustering results
obtained for T60 = 200 ms. In general, the performance across
the different background noises types is very similar. It can be
observed that the obtained clustering is very close to GT and
only four microphones from the third cluster are assigned to
the other two clusters in the worst case.

Fig. 4 shows the clustering results obtained for
T60 = 400 ms. As can be observed, the method is robust
against reverberation time and most of the microphones
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are properly labelled to their respective clusters. The worst
performance is obtained when the background noise is station.
In this case, the method tends to include some microphones
from the third clusters in the first cluster. Although to a lesser
extent, a similar behavior can be observed for the restaurant,
exhibition and street noise.

Table I reports the accuracy results provided by both meth-
ods when evaluating the database described in Section IV-A.
Overall, the proposed method outperforms the method based
on k-means and AR models. Note that the proposed method
improves accuracy when the number of microphones is in-
creased. This is because more spatial information is captured
when using more microphones and NMF is able to gen-
eralize the clustering problem properly. Using more spatial
information from the acoustic environment makes it easier
to discriminate coherence patterns. This behaviour is not
observed in the compared method. A worse performance of
the proposal can be seen for restaurant noise compared to the
k-means method when the reverberation time is 400 ms. This
may be due to the use of pre-learned AR models.

TABLE I: Comparison of the clustering methods in terms of
accuracy for each type of background noise and as a function
of the microphone number and reverberation time.

Nº nodes T60(ms) Method Babble Exhibition Car Restaurant Station Street

20
200

NMF 95% 90% 100% 85% 90% 90%
K-means 85% 70% 85% 85% 80% 85%

400
NMF 85% 95% 85% 85% 90% 95%

K-means 80% 75% 80% 95% 80% 75%

50
200

NMF 96% 92% 98% 98% 94% 94%
K-means 84% 74% 80% 78% 78% 74%

400
NMF 96% 94% 96% 94% 90% 94%

K-means 82% 74% 80% 70% 74% 77%

V. CONCLUSIONS

In this paper, we presented an unsupervised clustering
method to cluster the nodes in a WASN into subnetworks,
which detect different speakers. In particular, the proposed
node clustering was based on the magnitude-squared coher-
ence estimation between microphones observations. Then, a
NMF strategy has been developed to find the optimal cluster-
ing. At the end, each subnetwork is focused on detecting one
of the multiple speakers in the acoustic scene. The developed
proposal allows to perform the clustering without any prior
information of the speakers of the acoustic scenes. The results
showed improved clustering performance in comparison to
state-of-the-art method. Specifically, we reached an increase
of 10% in terms of accuracy.

As future work, we would investigate a way to extend
the proposal to a distributed network. Additionally, we will
investigate the detection of the number of speakers within the
proposed model.
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