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Abstract—This work aimed to map electroencephalography 
(EEG) signals recorded during speech production to an 
intelligible speech. Experiments were designed to record EEG 
and spoken speech signals from normal participants. EEG 
features were processed with a Gaussian process regression 
method, and used to estimate multiple temporal amplitude 
envelopes of a spoken speech signal. The estimated envelopes 
were further applied to synthesize an intelligible speech signal 
by using a temporal envelope-based vocoder model. The 
performance of reconstructing the spoken speech signal was 
evaluated by the short-term objective intelligibility (STOI) 
index and the root mean square error (RMSE) between the 
reconstructed vocoded speech and the original spoken speech. 
Results showed a small RMSE between two sets of mel-
frequency cepstral coefficients, and a STOI measurement up to 
0.71. Both measures outperformed results from existing studies 
with similar tasks, indicating the potential in synthesizing an 
intelligible spoken speech with EEG signals in brain-computer 
interface based speech communication. 

Keywords—electroencephalography, speech synthesis, brain 
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I. INTRODUCTION 
Speech communication plays an important role in daily 

activities in human society. Unfortunately, a huge number of 
people are suffering speech disorders worldwide [1]. To 
create a new communication approach for people with 
communication disorder, recent studies investigated the 
speech-based brain computer interface (BCI) [e.g., 2] and 
have achieved promising results. For instance, neural cues of 
speech prosody in receptive [3] and productive [4] speech 
cortices have been interpreted. Deep neural networks have 
been applied to BCIs [e.g., 5-6], and studies were able to 
reconstruct a perceived speech [7] and to reconstruct spectral 
dynamics of speech from electrocorticography (ECoG) [8]. 
More recently, speech waveforms of ten digits were directly 
reconstructed from the corresponding listening ECoG by a 
fully connected network [9]. Anumanchipalli et al. encoded 
and decoded the spoken ECoG using recurrent neural 
network, and transformed cortex activities into articulatory 
movements and intelligible spoken sentences [10]. Angrick 
et al. reconstructed speech of different words with 3D 
convolutional neural network [12]. Since ECoG is an 
invasive approach of monitoring cortex activities, 
electroencephalography (EEG) as an alternative has emerged 
in speech-based BCI applications. Spoken speech and 
listening utterances were synthesized from the corresponding 
EEG recordings [e.g., 11, 13]. For the purpose of studying a 
BCI-based speech communication approach, this work aimed 
to map EEG signals during speech production to the 
corresponding speech signal. 

Early studies showed that the temporal amplitude 
envelops of a speech signal could be tracked from ECoG 
[14]. The temporal amplitude envelopes from 4 frequency 
bands of a speech signal could be used to synthesize an 
intelligible speech [15], because temporal envelope (i.e., a 

slow-changing waveform of speech amplitude variation) 
carries important perceptual cues for speech perception. 
Meanwhile, Gaussian process has been proved to be a 
successful tool in biomedical signal modeling [e.g., 16-17], 
gaining its high generalization ability from small-sample and 
non-linear training [18]. In our previous work, Gaussian 
process regression (GPR) showed the potential in speech 
reconstruction for English syllable and words using EEG 
signals during speech imagery in a public dataset [19].  

However, there are different mechanisms in speech 
comprehension among different languages [e.g., 20-21]. As a 
tone language, Chinese has four tones for each syllable and 
different tones of Chinese syllables define specific meaning 
in different contexts. Following the research purpose of this 
work, this study used EEG signals of spoken speech and 
Gaussian process regression to decode multi-band temporal 
envelopes for Chinese speech synthesis. 

II. EXPERIMENT AND METHOD 

A. Data collection 
Seven male and four female native Mandarin-Chinese 

speakers participated in this experiment. All participants 
were between 20 and 24 years old (mean age 22 years) and 
with normal abilities in language speech and hearing. EEG 
signals were recorded by a 64-channel Neuroscan Quick-cap 
and sampled at a rate of 1000 Hz, where the electrode 
locations were determined by the 10-20 system [22]. The 
experiment was approved by the Institution’s Ethical Review 
Board of Southern University of Science and Technology. 

This work used 18 Mandarin monosyllables as stimulus 
materials, which were /a/, /ba/, /bi/, /bu/, /fa/, /fu/, /ji/, /ju/, 
/la/, /li/, /lu/, /lv/, /ma/, /mi/, /mu/, /yi/, /wu/ and /yu/. These 
monosyllables were selected to involve different consonant-
vowel combinations in Mandarin Chinese, derived from 
Mandarin Speech Perception Test corpus [23]. Each 
monosyllable had four Mandarin tones (except the first tone 
for /mu/ and /lv/) and each tonal monosyllable was randomly 
repeated for 5 times, resulting in a total of 350 trials for each 
participant. Data from 4 of the 11 participants were removed 
because the participants were not concentrated on the tasks 
or their spoken speech signals were not recorded in the 
experiment. 

There were five stages for each trial in the following 
sequence: (1) a 3-sec rest state, where participants cleared 
their mind; (2) a 1.5-sec listening state, where the audio 
waveform of the tonal monosyllable was played by a 
loudspeaker; (3) a 2-sec imagined state, where participants 
imagined to speak the utterance presented; (4) a 2.5-sec 
intended state, where participants read the monosyllable 
silently without audible output; and (5) a 2.5-sec speaking 
state, where participants spoke the monosyllable aloud. The 
spoken speech signal was recorded at a 16 kHz sampling rate. 
EEG signals were recorded simultaneously in each stage. In 
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Fig. 2. Overall framework of the vocoder-GPR based speech synthesis approach. Each box on the EEG signal represents a window with length of 
10% of the EEG signal, and two neighboring boxes are with 50% overlapping. 

  

Fig. 1. GPR modeling process for predicting each temporal 
envelope. GPR models are trained at each sampling instance t 
separately. There are L GPR models, and the EEG feature set (with 
size of N × M) is used for L times, where L is the number of time 
steps in speech sampling. In total, there are  L × 24 models in this 
work. 

this work, only the EEG signals from the speaking state were 
used for the speech reconstruction task for monosyllables. 

B. Speech and EEG signal pre-processing 
Silent parts in speech recordings were eliminated by 

voice active detection (VAD) algorithm, as this work 
focused on the relation between speech information and EEG 
signals. Also, those parts of EEG signals corresponding to 
the silent parts of speech were eliminated to maintain the 
consistency and simultaneity between spoken speech and 
EEG signals. Finally, different speech waveforms were 
normalized in power spectrum. 

For pre-processing the EEG signals, EEGLAB [24] was 
applied to remove artifacts (e.g., electrocardiography and 
electromyography) from the original EEG signals  using 
independent component analysis. Signals between 1 Hz and 
30 Hz were remained by band-pass filtering. This work 
segmented the EEG data with windows with length of 10% 
of an EEG signal, and with 50% hop between two adjacent 
windows (see the boxes on the EEG signal in Fig. 1). Thus, 
there were 19 windows for each channel of EEG signal. For 
feature extraction, the mean values  and their first and second 
order differentials were calculated as EEG features within 
each window. By selecting the mean values and differentials 
by windows, EEG features became closer to Gaussian 
distribution and carried temporal-changing cues [12]. For 
EEG channel selection, 10 channels (i.e., FC6, FT8, C5, CP3, 

P3, T7, CP5, C3, CP1 and C4) were finalized since EEG 
signals from these channels were reported to have high 
correlation with the corresponding speech recordings [25]. In 
order to combine the information from these 10 channels and 
maintain the high correlation between EEG features and 
speech recordings, EEG features were averaged among the 
selected 10 channels, resulting in 57 (=19 × 3) features or a 1 
× 57 feature vector for each EEG recording. 

C. Multi-band vocoder for speech synthesis 
The perceptual contributions of temporal envelope have 

been revealed by the study of vocoder modeling in speech 
analysis [15, 26]. The input speech is first processed by a set 
of band pass filters (BPFs). For the band-pass filtered signal 
at each frequency band, waveform rectification and low-pass 
filtering are used to generate the temporal amplitude 
envelope, which carries important perceptual information 
[15]. In order to synthesize an intelligible vocoded speech, 
carrier signals (e.g., pure tone or white noise signal) are 
modulated by these envelopes and all modulated carrier 
signals are summed up. When there are more than 4 
frequency bands in the vocoding process [15], the vocoded 
speech is with sufficient intelligibility. In this work, the 
number of frequency bands is selected as 24, indicating that 
there are 24 temporal envelops for each speech signal. 

D. Gaussian process regression modeling 
The proposed approach for speech synthesis is based on 

the vocoder-GPR framework, as shown in Fig. 1. In order to 
model the dependencies between the speech envelopes and 
EEG signals, at each sampling instance, covariance functions 
are used to represent the difference and dependencies among 
all EEG signals from all trials. The different speech 
recordings of the same material (i.e., reading the same 
monosyllable) follow Gaussian distributions. Thus, for each 
speech envelope, we model the Gaussian distribution at each 
sampling instance, as shown in Fig. 2. 

Here EEG features are denoted as 𝐸  and each speech 
envelope is denoted as 𝑆, as: 

 𝐸 = �
𝐸1
⋮
𝐸𝑁
� = �
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⋮
𝐸𝑁1

  𝐸12
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where N  is the number of EEG (or speech) trials in the 
training set, M is the dimension of EEG features, and L is the 
number of sampling instances (i.e., the length) of the speech 
envelope, which is also the length of the speech signal. In 
this work, N = 280, M = 57, and we took L = 14400 (i.e., 
equal to 0.9 second under 16 kHz sampling rate for speech 
recording), as the VAD algorithm determined that the active 
parts for monosyllable speech lasted for around 0.9 second in 
this experiment. 

At each sampling instance 𝑙  (= 1, 2, ⋯, L), the speech 
envelope is modeled as a multivariate Gaussian distribution, 
and represented as: 

 [𝑆1𝑙 ⋯ 𝑆𝑁𝑙]𝑇 ~ 𝐺(𝜇,𝐾), (3) 

where 𝐺(·)  denotes the multivariate Gaussian distribution 
with μ as a vector consisted of the mean values, and K as the 
covariance matrix with element 𝐾𝑖𝑗  determined by kernel 
𝑘�𝐸𝑖 ,𝐸𝑗� . Here 𝑘(·)  is a radial basis function (i.e., RBF 
kernel), as: 

 𝑘�𝐸𝑖 ,𝐸𝑗� = 𝛼2 exp �−
�𝐸𝑖−𝐸𝑗�

2𝛾2
�, (4) 

where α and γ are parameters which determine the 
hyperparameter ϑ = [α, γ], calculated by all EEG feature 
vector pairs 𝐸𝑖 and 𝐸𝑗. 

Given the above mathematic modeling, for a known EEG 
features 𝐸∗ , envelope 𝑆∗  can be predicted by Gaussian 
likelihood, as: 

 𝑝(𝑆∗|𝐸∗,𝐸, 𝑆, ϑ, 𝑙) = 𝑁𝑙(𝑘∗𝑇𝐾−1𝑆, 𝜅 − 𝑘∗𝑇𝐾−1𝑘∗), (5) 

where 

 𝑘∗ = 𝐾(𝐸∗,𝐸) = [𝑘(𝐸∗,𝐸1), … , 𝑘(𝐸∗,𝐸𝑁)], (6) 

and 

 𝜅 = 𝑘(𝐸∗,𝐸∗). (7) 

Here the hyperparameter ϑ is optimized by maximizing 
the conditional probability 𝑝(𝐸|𝑆, ϑ)  from the training set 
[𝐸, 𝑆] . This work took conjugate gradient descent on the 
logarithm of 𝑝(𝑆|𝐸, ϑ) for the purpose of optimization, as: 

 𝑙𝑜𝑔 𝑝(𝑆|𝐸, ϑ) = −𝑁
2
𝑙𝑜𝑔2𝜋 − 1

2
𝑆𝑇𝐾−1𝑆 − 1

2
log|𝐾|.(8) 

E. Vocoder-GPR model training 
Speech envelopes were generated from the original 

speech waveform by firstly applying a 6th-order band-pass 
Butterworth filter between 80 Hz and 6000 Hz, decomposing 
the speech signal into 24 frequency bands based on 
frequency-position mapping function [27]. Secondly, full-
wave rectification and 2nd-order low-pass filter with a cut-
off frequency of 200 Hz were applied to each frequency band 
to extract the raw speech envelopes, which were used for the 

GPR model training for envelope reconstruction. After 
envelopes were reconstructed, all amplitude-modulated 
carrier signals (i.e., sinusoidal waveform in this work) 
modulated by reconstructed envelopes were summed up to 
generate the vocoded speech signal. Finally, the vocoded 
speech signal was normalized in terms of root-mean-square 
power, in order to keep the magnitude as the level of the 
original speech recording. GPR models were trained using 
the GPML toolbox [18] on Matlab. Table 1 describes the 
initial parameters of GPR models. Different models were 
trained at different sampling instance; therefore EEG features 
were used for L times for each envelope and there were L × 
24 (frequency bands) models for a given EEG-speech pair. 

The training processes were conducted separately for 
each participant in this experiment. Using the data from 
speaking state only, for each participant, 80% (i.e., 280 trials) 
of the shuffled data served as the training set and the rest 20% 
(i.e., 70 trials) as the testing set; then a five-fold cross 
validation was implemented. The speech synthesis was only 
conducted for 7 participants, since data from 4 of the 11 
participants were removed as the participants did not 
successfully finish the experimental tasks while collecting 
EEG signals. 

III. RESULTS 
For evaluating the performance of synthesizing spoken 

speech, this work computed the root mean square error 
(RMSE) between the mel-frequency cepstral coefficients 
(MFCCs) of the original and reconstructed vocoded speech 
signals, as: 

 𝑅𝑀𝑆𝐸(𝑥,𝑦) =  �1
𝑚
∑ (𝑥𝑖 − 𝑦𝑖)2𝑚
𝑖=1 , (9) 

where 𝑥  and 𝑦  are respectively the MFCCs of the original 
speech signal and the reconstructed vocoded speech signal, 
and 𝑚 is the dimension of MFCCs. 

TABLE I. PARAMETERS INITIALIZATION FOR GPR SETTING. 

Mean Covariance Likelihood Optimization 

0 [0, -1] -1 
Polack-
Ribiere 

TABLE II. COMPARISON FOR SPEECH RECONSTRUCTION WITH [11] 
AND [12] ON RMSE AND STOI MEASURES. 

 RMSE STOI 

Krishna, et. al [11] 4.86 N/A 

Angrick, et. al [12] N/A 0.33±0.14 

Participants 1 1.87 0.62 

Participants 2 1.82 0.63 

Participants 3 2.39 0.59 

Participants 4 2.40 0.62 

Participants 5 2.51 0.57 

Participants 6 2.67 0.71 

Participants 7 2.72 0.67 

Average 2.34±0.36 0.63±0.04 
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Fig. 3. The reconstructed (red) and raw envelopes (blue) from band 
3 of a spoken speech signal. 

 
Fig. 4. Spectrograms of (a) the raw speech, (b) the vocoded raw 
speech and (c) the reconstructed vocoded speech. 

 
Also, the short-time objective intelligibility (STOI) 

measure [28] between the original and reconstructed 
vocoded speech signals was calculated. As shown in Table 2, 
we compared our speech synthesis results with those of 
Krishna et al. [11] and Angrick et al. [12], both of which 
reconstructed speech from speaking-state cortex activity. 

Krishna et al. [11] reconstructed the MFCCs from the 
spoken EEG signals and calculated the RMSE between the 
ground truth and the predicted MFCCs in 13 dimensions. 
This work extracted MFCC features with the same 
dimension (i.e., 13) for each participant and each trial for 
both the original and reconstructed speech, and calculated the 
averaged RMSE for each participant. The averaged RMSE 
result in this experiment was 2.34 for 7 participants, with the 
lowest RMSE value of 1.82 for participant 2. Our results 
outperformed the results in [11], which had a lowest RMSE 
value of 4.86. 

In the STOI measurement, the experiment in [12] 
instructed participants to read the words continuously and 
also recorded the spoken speech continuously, which 
resulted in a long speech waveform. Therefore, this work 
also concatenated all the reconstructed speech (i.e., from 70 
trials) to generate a long speech waveform for the STOI 
evaluation and comparison. In this experiment, an averaged 
STOI value of 0.63 was obtained for 7 participants, with the 
highest value of 0.71. For comparison, Angrick et al. [12] 
achieved an overall STOI result of 0.33 for 6 participants. 

Figure 3 shows an example of envelope reconstruction 
from band 3 of a spoken speech signal. It is seen that the 
reconstructed and raw envelopes are with high similarity. 
The spectrograms of the raw speech, the vocoded raw speech 
and the reconstructed vocoded speech are shown in Fig. 4. 
There is a frequency discontinuity in the high frequency 
range (between 3 kHz to 4 kHz) when comparing the 
spectrograms of the raw speech and the reconstructed 
vocoded speech, which is because the vocoding process 
decomposes the speech signal into limited (i.e., 24 in this 
work) frequency bands. 

IV. CONCLUSION 
This paper showed that spoken speech signals could be 

decoded from EEG-based neural recordings during speech 
production. A GPR based method was used to map EEG 
signals recorded during speech production onto multiple 
temporal amplitude envelopes of a speech signal, which were 
subsequently used to synthesize an intelligible speech signal 
with an envelope-based vocoder model. The speech synthesis 
results outperformed those from recent publications [e.g., 11, 
12] on objective comparisons with STOI and MFCCs-based 
RMSE between the original and reconstructed vocoded 
speech signals. 
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