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Abstract—In recent days, computer-aided diagnosis systems
powered by artificial intelligence and machine learning have
become an important part of medicine for assisting the doctors in
critical decision making. They are popularly deployed in cardiol-
ogy for early and automatic detection of various life-threatening
diseases. However, a machine learning algorithm requires a large
volume of training data to create the learning model which is
an empirical problem in medical domain. Generating synthetic
patient data has emerged as an important area of research to
solve the issue. In this paper, we propose a novel Generative
Adversarial Network (GAN) architecture using medical domain
knowledge to create realistic Electrocardiogram (ECG) wave-
forms containing the signature of Atrial Fibrillation (AF), a
common type of arrhythmia. Our composite architecture consists
of a pair of GANs to simulate the disease-specific Heart Rate
Variability (HRV) pattern and the unique signal morphology in
the generated waveforms. The proposed architecture is applied on
two public datasets for synthesis of AF-specific ECG to mitigate
the class imbalance issue. Results show that the performance of
existing AF classifiers significantly improves on both datasets by
adding the synthetic data to the training set.

Index Terms—ECG, Deep learning, Data augmentation, Gen-
erative Adversarial Network

I. INTRODUCTION

Electrocardiogram (ECG) is a clinical test to record the
electrophysiological activities of the heart. The recorded data
is interpreted by the doctors for non-invasive diagnosis of car-
diovascular diseases. However, it is practically impossible to
manually analyse the large volume of ECG data generated each
day in a hospital. An automatic diagnosis from the digitally
recorded ECG is possible, thanks to the recent advancement
in artificial intelligence, machine learning, and deep learning
techniques. A supervised learning-based cardiac disease clas-
sification algorithm requires a large volume of annotated data
to create the training model. Recording of large scale patient
data is time consuming and often challenging due to privacy
issues and associated risks in case of infectious diseases. The
problem is addressed in data science by generating synthetic
but realistic patient data.
Although normal ECG samples are relatively easy to
record and are substantially available in various open-access
databases, the quantity of abnormal recordings correspond-

ing to different heart diseases is often inadequate to train
a machine learning or deep learning model. McSharry et
al. [1] proposed a mathematical model to generate realistic
ECG signals corresponding to normal people through a set
of ordinary differential equations. Clifford et al. [2] proposed
an approach to simulate abnormal ECG patterns using a sum
of Gaussian kernels fitted to vectorcardiogram recordings and
a hidden Markov model. The physiological model in [3]
can simulate ECG based on a discretized reaction-diffusion
system to mimic the main pacemakers in the heart. Apart
from the physics-based models, pure statistical and deep
learning approaches can also be found in literature. The deep
learning algorithms aim to simulate newer artificial data by
learning the distribution from a real-world training dataset. The
Generative Adversarial Network (GAN) is a popular example
of such generative modeling which is extensively used for
creating realistic images and time-series data. Zhu et al. [4]
proposed a GAN architecture using the MIT-BIH arrhythmia
database. However, utility of the generated ECG data was
not qualitatively evaluated on the existing AF classifiers.
The GAN proposed by Hatamian et al. [5] can generate
the spectrograms of ECG corresponding to Atrial Fibrillation
(AF) patients, but not the time-series waveforms. Although
the existing GAN models can successfully generate realistic
ECG for normal people, their performance is relatively poor
to generate disease-specific data. An ECG signal is complex
in nature. Moreover, a disease-specific recording can have
various anomalous components depending upon the underlying
pathological condition. Hence, it is difficult to simulate using
pure deep learning approaches.
In this paper, we propose a novel hybrid GAN architecture to

generate relaistic disease-specific ECG waveforms, taking AF
as an example. The architetcure is derived based on medical
domain knowledge to incorpoarte the clinical markers of AF
in generated data using multiple GANs. As shown in Fig.1, a
complete cycle of a normal ECG waveform has three major
components, the P wave, the QRS complex which contains
the R peak, and the T wave. AF is a cardiac disorder where
abnormal electrical impulses start firing in the atria, causing
a faster heart rate [6]. It has two known clinical markers
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Fig. 1. ECG pattern of a normal subject and an AF patient.

on ECG as shown. The P waves are either absent or are
replaced by fibrillatory waves. Secondly, the irregular Heart
Rate Variability (HRV) causes large variation in successive R-
R interval distances. Our proposed architecture comprises two
GANs to simulate these two AF markers:

• Long Short-Term Memory GAN (LSTM-GAN) to gen-
erate the HRV pattern of AF.

• Deep Convolutional GAN (DCGAN) to create the mor-
phology of ECG cycle.

The complete ECG waveforms are created by combining the
output of the two GANs. The generated recordings are used
to balance the AF and non-AF class ratio in the PhysioNet
Challenge 2017 and the PhysioNet Challenge 2020 database
and the utility is validated on two benchmark AF detection
algorithms. In Section II, we provide a detailed description of
our proposed architecture followed by experimental results in
Section III and a conclusion in Section IV.

II. PROPOSED COMPOSITE GAN ARCHITECTURE

The GAN is a popular deep generative model containing two
basic modules, generator and discriminator. The generator (G)
takes an N-dimensional latent vector (z) as input that follows
a Gaussian distribution and maps it to the generated data as
its output, G(z). The discriminator (D) outputs D(G(z)), the
probability to predict whether the generated data is real or fake
based on a training set of real data, x. The generator and the
discriminator reach a convergence state via a zero-sum game.
The objective function of a GAN is expressed in terms of the
min-max optimization process, as in eq. (1) [7].
min
G

max
D

V (D,G) = Ex∼P (x)[logD(x)] +Ez∼P (z)[log(1−D(G(z)))]

(1)
The discriminator tries to maximize the probability to correctly
classify real and fake data, and the generator tries to minimize
the probability that the discriminator will predict its output as
fake. Under an optimum state, distribution of the fake data
becomes equivalent to the real data, and the discriminator
classifies them at a probability of 0.5.
In this paper, we propose a novel GAN architecture using
medical domain knowledge to generate realistic ECG wave-
forms similar to real AF patients. Block diagram of the
proposed architecture is shown in Fig. 2. It also indicates
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Fig. 2. Proposed architecture for generating AF like ECG.

the tensor dimension at the output of different layers. The
architecture comprises an LSTM-GAN and a DCGAN which
are effectively combined in a single composite structure. The
LSTM-GAN is designed to generate the R-R interval distances
time-series that follows the irregular HRV pattern of AF.
Whereas, the DCGAN is responsible for generating the signal
morphology between two adjacent R peaks in time domain. A
set of 30-dimensional latent vectors, randomly sampled from
a standard normal distribution is fed to both generators as
input in batches to train the composite network. The proposed
approach is separately evaluated on the PhysioNet Challenge
2017 and the PhysioNet challenge 2020 database in this study.
A set of annotated AF recordings is selected from the two
databases to form the real data for the discriminators.

A. LSTM-GAN for generating R-R interval distances

Irregular HRV is a known clinical marker for AF. An LSTM
is a popular deep learning architecture that has its internal
memory for sequential modeling of time-series data in terms of
a hidden vector [8]. It can effectively learn the desired pattern
from a very long sequence due to the unique cell structure,
that enables to delete less important information from memory.
The R-R interval distances extracted from an ECG data can
be represented as a vector (rrt) of k real numbers. Here,
rrt = [rr1, rr2, ...rrk], where rri = ri+1 − ri, and ri is the
location of ith R peak in the ECG data on time axis. The
R-R interval distances are computed from the two PhysioNet
databases for creating the real data for the discriminator. Since
the ECG recordings do not have a fixed length in the original
databases, the number of points in the extracted R-R intervals
varies accordingly. However, all instances of real data applied
to the discriminator of a GAN are required to have the same
dimension. Considering the median duration, length of an
R-R intervals vector is selected as 50 in our architecture.
The shorter recordings are repeated and merged to achieve
the desired length, whereas the longer recordings are broken
into multiple partially overlapping segments to increase the
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instances of real data in the training set.
The generator of the LSTM-GAN in our architecture contains
two dense layers having 40 and 50 units respectively for map-
ping a 30-dimensional input latent vector to the desired data-
space of R-R intervals. Leaky Rectified Linear Unit (Leaky
Relu) with negative slope coefficient = 0.2 and hyperbolic
tangent (tanh) functions are used for non-linear activation of
the units in the two dense layers. The discriminator module
contains a pair of LSTM layers both having 64 units followed
by a single-unit dense layer with a sigmoid activation function
for classifying the generated sequences as real or fake.

B. DCGAN for generating signal morphology between two
adjacent R peaks

Normal atrial activities of the heart become awry due to
AF. This is reflected in the ECG morphology in terms of
missing P waves or presence of abnormal fibrillatory waves
before the QRS complex. We define a DCGAN structure
that can generate an ECG cycle from an input latent vector
incorporating such unique morphology. As shown in eq. (2),
an ECG time-series, ecgt can be represented as a a vector of
m real numbers.

ecgt = [ecg1, ecg2, ...ecgr1 , ...ecgr2 , ...ecgri , ...ecgm] (2)

It contains a set of landmark points in terms of the R peaks
whose locations are known. Here, ri indicates the time location
of ith R peak, and ecgri is the corresponding amplitude. An
ECG cycle is defined in this paper as the segment between
two adjacent R peaks. The pth cycle is extracted as:

cyclep = [ecg{rp}, ecg{rp+1}, ecg{rp+2}, ...ecg{rp+1−1}]. (3)

In a DCGAN [9], the lower dimensional latent vector is
converted to the desired space of realistic generated data using
a series of convolution and transposed-convolution operations
in the discriminator and the generator respectively through a
set of filters (kernel). ECG signals in the two training databases
are first set to a fixed sampling rate of 300 Hz. Subsequently,
the ECG cycles are extracted with respect to the reference R
peaks. The length of the extracted cycles is required to be fixed
for applying them to the discriminator module. Mean heart rate
of an AF patient is known to be higher than the normal range.
The cycle length is selected as 200 (≈667 ms long, instanta-
neous heart rate = 90 bpm) to be generated in our architecture.
Durations of the extracted real cycles are modified accordingly
using cubic spline interpolation technique. The discriminator
module of the proposed DCGAN architecture contains two
1D convolutional layers with associated batch-normalization
and Leaky Relu activation layers. The convolutional layers
contain 64 and 128 filters respectively with kernel dimension
of 4. The output is downsampled at each convolutional layer
by setting a stride length of 2. The resultant feature-map is
flattened and applied to a single-unit dense layer to classify
real and fake data through a sigmoid activation function. In
order to mitigate the chance of over-fitting, 30% dropout is
applied to the convolutional layers. The generator is comprised
of a dense layer and a pair of strided transposed-convolutional
layers (also known as deconvolutional layers) of having 128

and 64 filters (stride length = 2, kernel dimension = 4) with
associated Leaky Relu layers to map the input latent vector
to a higher dimensional space. There is a final convolutional
layer, having a single filter of kernel dimension = 7 with a
’tanh’ activation function to convert the feature-map to the
desired shape of an ECG cycle.
C. Training of the proposed network

Separate mini-batches of real and fake data are used for
training. The real and the fake samples are annotated as 1
and 0. The discriminator of a GAN aims to maximize the
probability of correctly classifying an input as real or fake. The
loss is expressed as Dloss = log(D(x)) + log(1−D(G(z))).
These two terms are separately calculated on the mini-batches
for real and generated fake data, providing a forward pass
through the discriminator, and the gradients are calculated
through a backward pass. For the generator, the loss term is
Gloss = log(D(G(z))). It tries to maximize log(D(G(z))),
which is achieved by minimizing the term log(1−D(G(z))).
The loss is calculated based on the classification output of the
generated data as predicted by the discriminator.
In order to ensure the ECG cycles generated by the DCGAN
are close to real ECG morphology, the Mean Squared Error
(MSE) between the real and the generated data is added to the
generator loss function of the DCGAN as a penalty term to
be minimized. Hence, the total generator loss of the DCGAN
is:

GDCGAN
losstot = GDCGAN

loss + λ ∗ 1

n

∑
(Yi − Ŷi)

2 (4)

Y and Ŷ indicate real and generated data, n is the batch size,
the constant λ controls the weight of the penalty term. A small
value is set as λ = 0.05 so that unrestricted newer samples can
be generated by the DCGAN keeping the overall morphology
similar to real ECG cycles.
We use Adam optimizer with a learning rate of 0.0002 for
the LSTM-GAN and the DCGAN. The mini-batch size is
set as 64. The model weights are initialized from a normal
distribution with zero mean and standard deviation of 0.02.
Label smoothing is applied to modify the hard labels for
real data slightly more or less than 1 and slightly more than
0 for fake data, where the variation for each label is done
randomly. Additionally, we introduce some noise in the labels
by randomly flipping the labels of a small fraction of real
and fake data in each mini-batch. Both techniques have a
regularization effect to avoid over-fit. The composite network
is trained end to end up to 500 epochs applying the same set
of 30-dimensional latent vectors to the generator modules of
the LSTM-GAN and the DCGAN in every mini-batch.

D. Generating the complete ECG waveforms

Once the training is done, the generator of the LSTM-
GAN and the DCGAN can generate a vector of R-R interval
distances of length 50 and an ECG cycle of 200 points
from a 30-dimensional input latent vector. The complete ECG
waveform is created by modifying the length of the generated
ECG cycle according to the R-R interval distances using
cubic spline interpolation and merging them on time axis. The
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generated signal is finally applied to a 4th order Butterworth
bandpass filter, having cut-off frequencies of 0.5 Hz and 20
Hz to remove the undesired noise components.

III. EXPERIMENTAL RESULTS

The proposed architecture was implemented in python 3.6
using TensorFlow 1.15 library. The training was performed
on a computer with having Intel i7-7820X processor, 16
GB primary memory, and a GeForce GTX 1080 Ti graphics
processing unit. Few samples of generated ECG waveforms are
shown in Fig. 3. Irregular HRV pattern, the primary marker
for AF is clearly visible in all of them. Absence of P wave
before the QRS complex can be found in the first two samples,
whereas the remaining samples show traces of fibrillatory
waves.
The efficacy of the proposed approach in data augmentation
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Fig. 3. Sample ECG waveforms generated by the proposed composite GAN
architecture.

to mitigate the class imbalance problem of a dataset in training
a supervised learning-based AF classifier is also evaluated on
the Physionet Challenge 2017 database [10] and the PhysioNet
Challenge 2020 database [11]. Both databases contain ECG
signals recorded from normal people and patients having
AF and other cardiac diseases. Our objective is to study
the performance improvement of the existing AF classifiers
on a highly imbalnaced ECG dataset after applying various
data augmentation approaches. Since the proposed architecture
is designed to simulate AF-specific data, we focus only on
classifying AF and non-AF recordings. Further classification
of the non-AF recordings is beyond the scope of this study.
For an effective analysis, we keep both normal as well as
non-AF but other types of cardiac diseases in the non-AF
class. The PhysioNet Challenge 2017 database [10] contains
annotated single-lead ECG signals of 5154 normal, 771 AF,
and 2557 other types of abnormal recordings. We convert the
original database to a highly imbalanced database for binary
classification by merging all types of non-AF recordings under
a single class. The re-annotated database contains 7711 non-
AF and 771 AF recordings. The recordings are sampled at

300 Hz. On the other hand, the PhysioNet Challenge 2020
database [11] is a very large multi-source corpus of 12-lead
ECG data recorded from hospitals in different geographical
locations. The signals in the original database are sampled
at 500 Hz which are resampled at 300 Hz. A portion is
randomly selected from the large original database for our
study. The selected portion contains 400 AF and 4000 non-AF
recordings. The non-AF class includes normal sinus rhythms
and non-AF abnormal conditions like 1st degree AV block, left
anterior fascicular block, complete right bundle branch block,
bradycardia etc. The lead II data is considered in this study.
In order to evaluate the impact of the porposed data aug-
mentation technique on classification performance, we select
two popular state-of-the-art open-source supervised learning-
based AF classifiers to test on both the databases cosidered
in this paper. The first algorithm is a classical machine
learning approach by Datta et. al. [12], that trains a series
of cascaded binary AdaBoost classifiers using more than 150
hand-crafted features, related to ECG morphology and short-
term HRV. The second algorithm by Zihlmann et. al. [13]
proposes two separate deep learning AF-classifiers based on
CNN and CRNN that take the 2-D spectrogram of ECG as
input. The original algorithms are required to modify to binary
classifier for the purpose of this study. From each database,
80% of data is randomly selected for training by maintaining
the original class ratio, and the remaining portion is kept for
testing. The AF portion in the training set of both databases
is used for data augmentation to balance the class ratio of AF
to non-AF data. Subsequently, the AF classifiers are trained
on the balanced training set and evaluated on the test set.
Classification performance is reported in this paper in terms
of sensitivity (Se) and specificity (Sp) of detecting AF.

Se =
TP

TP + FN
, Sp =

TN

TN + FP
(5)

Here, TP , TN , FP and FN indicate the true positive, true
negative, false positive, and false negative. Table I shows the
performance improvement achieved by the machine learning-
based AF classifier [12] on both databases when the training is
done incorporating the proposed GAN model for data augmen-
tation. Here, we show a comparison of the proposed approach
with a number of existing data augmentaion approaches as
well as the effect of no data augmentation. A classifier trained
on a highly imbalanced database is expected to be biased
towards the majority class. A significant number of AF record-
ings are misidentified on both databases when the classifier
is trained on the original data where AF is the minority
class, resulting in a high specificity and a low sensitivity.
Synthetic Minority Oversampling Technique (SMOTE) [14]
and Adaptive Synthetic (ADASYN) [15] are popularly used in
machine learning for data augmentation. Instead of generating
ECG waveforms, these methods can only simulate new data-
points in the feature-space based on local information from
the hand-crafted features computed from the real ECG. The
synthetically generated features are merged with the features
extracted from the real ECG data to balance the class ratio
in the feature matrix and applied to the classifier. Although
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the sensitivity of detecting AF improves due to them, there
is a negative impact on specificity. On the other hand, the
proposed GAN model generates newer ECG waveforms via
learning the distribution of the original recordings. Hence,
the hand-crafted features computed from the generated wave-
forms are found more effective than SMOTE and ADASYN,
which significantly improves the classifier sensitivity without
affecting the specificity. Table II shows that the proposed

TABLE I
QUANTITATIVE ANALYSIS OF THE MACHINE LEARNING-BASED AF

CLASSIFIER IN [12], APPLYING VARIOUS DATA AUGMENTATION
TECHNIQUES TO IMPROVE THE CLASS IMBALANCE OF THE TRAINING SET

IN THE PHYSIONET CHALLENGE DATABASES

augmentation
(not used)

augmentation
(SMOTE)

augmentation
(ADASYN)

augmentation
(proposed
GAN)

The PhysioNet Challenge 2017 database
Se Sp Se Sp Se Sp Se Sp
0.81 0.96 0.84 0.93 0.86 0.93 0.93 0.96

The PhysioNet Challenge 2020 database
Se Sp Se Sp Se Sp Se Sp
0.78 0.95 0.82 0.91 0.84 0.89 0.91 0.95

data augmentation approach has a similar impact on the CNN
and CRNN-based AF classifiers in [13]. Here, the proposed
GAN architecture is compared with two other approaches.
The first approach is a popular trick used in deep learning on
unbalanced dataset, where the AF classifier is trained on the
original imbalanced dataset by assigning 10 times higher class
weight to the minority class, which pays more attention to AF.
In spite of a significant improvement in sensitivity, it shows a
negative impact on specificity. Secondly, we compare with the
GAN architecture proposed in [5] that generates spectrogram
of ECG without reconstructing the time-series. Unlike [5], our
proposed method is designed based on clinical biomarkers of
AF. It shows to be more capable of generating realistic ECG
time-series to improve the diversity of the training set. Thus,
it has the optimum impact on the AF classifier performance.

TABLE II
QUANTITATIVE ANALYSIS OF THE DEEP LEARNING-BASED AF

CLASSIFIERS IN [13], APPLYING VARIOUS DATA AUGMENTATION
TECHNIQUES TO IMPROVE THE CLASS IMBALANCE OF THE TRAINING SET

augmentation
(not
used)

augmentation
(class
weight)

augmentation
(GAN [5])

augmentation
(proposed
GAN)

The PhysioNet Challenge 2017 database
Se Sp Se Sp Se Sp Se Sp

CNN 0.79 0.99 0.89 0.91 0.83 0.98 0.92 0.99
CRNN 0.81 0.98 0.92 0.93 0.89 0.96 0.95 0.98

The PhysioNet Challenge 2020 database
Se Sp Se Sp Se Sp Se Sp

CNN 0.69 0.90 0.72 0.86 0.81 0.94 0.90 0.97
CRNN 0.75 0.92 0.89 0.90 0.90 0.93 0.92 0.97

IV. CONCLUSION

Recording of large scale patient data can often be chal-
lenging due to various reasons. Synthesis of realistic data
has become an important area of research in biomedicine to
optimize the performance of a supervised learning classifier on

a highly imbalanced dataset. In this paper, we propose a novel
GAN architecture to generate disease-specific realistic ECG
waveforms based on clinical biomarkers, considering AF as a
use case. Results show that the proposed data augmentation
approach can significantly improve the performance of existing
AF detection algorithms on two highly imbalanced public
databases. Although the proposed architecture is specific to
AF, the concept can be extended to a generic framework to
simulate realistic ECG waveforms for other types of cardio-
vascular diseases as well based on their clinical markers.
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[3] M. Quiroz-Juárez, O. Jiménez-Ramı́rez, R. Vázquez-Medina, V. Breña-
Medina, J. Aragón, and R. Barrio, “Generation of ecg signals from a
reaction-diffusion model spatially discretized,” Scientific Reports, vol. 9,
no. 1, pp. 1–10, 2019.

[4] F. Zhu, F. Ye, Y. Fu, Q. Liu, and B. Shen, “Electrocardiogram generation
with a bidirectional lstm-cnn generative adversarial network,” Scientific
reports, vol. 9, no. 1, pp. 1–11, 2019.

[5] F. N. Hatamian, N. Ravikumar, S. Vesal, F. P. Kemeth, M. Struck, and
A. Maier, “The effect of data augmentation on classification of atrial
fibrillation in short single-lead ecg signals using deep neural networks,”
in ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 1264–1268.

[6] D. with the special contribution of the European Heart Rhythm Asso-
ciation (EHRA), E. by the European Association for Cardio-Thoracic
Surgery (EACTS), A. F. Members, A. J. Camm, P. Kirchhof, G. Y.
Lip, U. Schotten, I. Savelieva, S. Ernst, I. C. Van Gelder et al.,
“Guidelines for the management of atrial fibrillation: the task force
for the management of atrial fibrillation of the european society of
cardiology (esc),” European heart journal, vol. 31, no. 19, pp. 2369–
2429, 2010.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–
2680.

[8] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling,”
2014.

[9] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[10] G. D. Clifford, C. Liu, B. Moody, H. L. Li-wei, I. Silva, Q. Li,
A. Johnson, and R. G. Mark, “Af classification from a short single lead
ecg recording: The physionet computing in cardiology challenge 2017,”
Proceedings of Computing in Cardiology, vol. 44, p. 1, 2017.

[11] E. A. P. Alday, A. Gu, A. J. Shah, C. Robichaux, A.-K. I. Wong,
C. Liu, F. Liu, A. B. Rad, A. Elola, S. Seyedi et al., “Classification of
12-lead ecgs: the physionet/computing in cardiology challenge 2020,”
Physiological measurement, vol. 41, no. 12, p. 124003, 2020.

[12] S. Datta, C. Puri, A. Mukherjee, R. Banerjee, A. D. Choudhury,
R. Singh, A. Ukil, S. Bandyopadhyay, A. Pal, and S. Khandelwal,
“Identifying normal, af and other abnormal ecg rhythms using a cascaded
binary classifier,” Computing, vol. 44, p. 1, 2017.

[13] M. Zihlmann, D. Perekrestenko, and M. Tschannen, “Convolutional
recurrent neural networks for electrocardiogram classification,” Com-
puting, vol. 44, p. 1, 2017.

[14] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[15] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic
sampling approach for imbalanced learning,” in 2008 IEEE interna-
tional joint conference on neural networks (IEEE world congress on
computational intelligence). IEEE, 2008, pp. 1322–1328.

1149


