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Abstract—The research work presented in this paper focuses
on a novel near-lossless compression algorithm which can be
efficiently used for compression of electroencephalograph (EEG)
signals. In particular, our proposed scheme aims to achieve a very
low complexity solution suitable for wearable EEG monitoring
systems. The algorithm is mostly based on a simple and efficient
encoding scheme which can be easily implemented even in
resources constrained microcontrollers. Despite its simplicity,
comparison results provided for several real-world datasets,
show that the proposed algorithm achieves compression ratios
comparable with more complex state-of-the-art solutions.

Index Terms—Electroencephalograph (EEG), near-lossless
compression, biomedical signal processing, RAKE

I. INTRODUCTION

Electroencephalography (EEG) is the recording of the brain
electrical activity by means of multiple electrodes commonly
placed on top of the scalp. Currently, its applications spans
from the investigation of human cognitive processes and neu-
rological disorders [1] to the implementation of brain computer
interfaces (BCI) [2].

In most applications high-density EEG systems with 64 or
even 256 electrodes are used to record the brain activity and
the recording time spans from few days to several weeks [3],
so that a large amount of data is generated for each EEG
recording. For instance, one gigabyte (GB) of data per day is
generated in the case of 64-electrodes EEG where signals are
sampled at 100 Hz and represented with 16-bit resolution.

In this context, considering the large volume of data, com-
pression algorithms can be profitably used with the aim of
reducing storage resources and power consumptions [4]–[7].

Basically, it is possible to classify compression algorithms
as lossless and lossy [8], [9]. In both cases, considering that the
main aim of compression algorithms is to reduce the amount
of data, their performance are usually measured in terms of
the compression ratio (CR), which is here defined as the ratio
between the number of bits needed to represent EEG data
before and after compression.

In general, lossy compression algorithms allow to achieve
much higher compression ratios but lossless compression
schemes are usually preferred in biomedical applications to
ensure that waveform details are not lost causing errors in
medical diagnosis [10], [11]. Nevertheless, lossless compres-
sion techniques have limited impact on storage requirements of

EEG applications because typical compression ratios that can
be achieved with state-of-the-art lossless algorithms are in the
order of 2 or 3 [12]–[17]. Even exploiting neural networks and
an adaptive error modeling with context-based bias cancelation
a maximum compression ratio of 3.23 has been obtained [18].

To solve this problem, lossy and near-lossless compression
algorithms have been proposed that can achieve substantial
higher compression ratios than lossless compression tech-
niques by introducing a distortion that is tolerable for the
specific application. Differently from lossy techniques, where
the quality of the reconstructed signal is expressed considering
the percent root-mean-square distortion (PRD), in the case
of near-lossless algorithms distortion is measured considering
both PRD and the maximum absolute error δ incurred on
individual samples.

In order to remove spatial redundancy or for simultaneous
spatio-temporal decorrelation, several near-lossless compres-
sion algorithms rely on wavelet transforms [19]–[21] and/or
matrix decomposition [22]–[25]. For instance, in [22] near-
lossless EEG compression schemes based on Singular Value
Decomposition (SVD) and its generalization, i.e., Parallel
Factor decomposition (PARAFAC), have been investigated and
compared with wavelet-based compression techniques. In most
cases, PARAFAC yields better compression performance but
the maximum compression ratio achieved with a PRD lower
than 2% was 4.96. In [23] the authors proposed a near-lossless
algorithm able to achieve a CR of 4.58 with a PRD in the range
between 0.27% and 7.28%, depending on the specific dataset
investigated. More recently, in [24] the authors proposed a
SVD-based compression scheme able to achieve 80% data
compression (i.e., CR=5) with a PRD of 5%.

However, as observed in [26], transform-based and SVD-
based algorithms have computational issues due to the fact that
the number of operations scales superlinearly with the number
of channels and samples to be processed, which translates
directly into higher latency and higher power consumptions.
Therefore the above algorithms are not suitable for real-time
compression on wearable EEG systems.

With this aim, in [26] authors proposed two near-lossless
compression algorithms based on an adaptive predictor and
able to achieve, for a maximum error δ = 10, a compression
ratio between 5.8 and 10, depending on the specific dataset
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investigated. Slightly better results have been obtained in [27]
combining signal processing and information theory tools
such as universal coding, universal prediction and multivariate
recursive least squares.

Several other lossy and near-lossless compression algo-
rithms exist which are not mentioned here for sake of space;
however, most of them are not suitable when only limited
computational resources are available, such as, for instance,
in EEG monitoring systems that, in order to reduce power
consumptions, rely on microcontrollers without floating point
units [26], [28].

In this paper, we present a new near-lossless compression
algorithm that relies mostly on a simple and efficient encoding
scheme. The proposed algorithm is able to achieve a com-
pression ratio and PRD comparable with other state-of-the-art
solutions but without using complex transforms. Therefore,
it can be easily implemented even in resources constrained
microcontrollers as those commonly used in Internet of Things
platforms and low-cost medical instruments and thus, dif-
ferently from other compression schemes, can be performed
directly in whatever EEG monitoring system.

II. PROPOSED ALGORITHM

The proposed algorithm exploits the RAKE encoding origi-
nally proposed in [29] and that we briefly review here for sake
of readability.

A. RAKE algorithm

Basically, the RAKE algorithm provides an efficient manner
to encode sparse binary strings, i.e. strings where the number
of non-zero bits, also referred to as set bits, is smaller than
the overall number of bits.

The algorithm can be explained by considering a sliding
window of length T that moves forward over the binary
sequence to be compressed, Sin, and that is able to catch
substrings of T bits at a time (originally, authors presented
their idea considering the rake commonly used in agriculture
instead of a sliding window, thus the name of the algorithm).

For each substring of T bits, an output codeword, Cout, is
generated accordingly to the following two possible cases:

1) In the substring there is at at least one set bit: in this
case a codeword of L = 1 + dlog2 T e bits is generated
where the first bit is set to 1 and the other dlog2 T e bits
are used to encode the position p ∈ [0, ..., T − 1] of the
first non-zero bit within the window; then the window
moves forward by p+1 positions (i.e. immediately after
the set bit that has been already encoded);

2) All T bits are zeros: in this case a single zero bit
codeword is used and the sliding window is moved
forward by T positions.

The above operations are repeated until the end of the
sequence Sin is reached. Finally, the compressed string Sout
is obtained by simply concatenating all previous codewords.

In Figure 1 a simple example is reported showing how
the sequence Sin = [010000001010000] of n = 15 bits is
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Fig. 1. Example of RAKE compression algorithm (T = 4).

compressed by the RAKE algorithm to produce a compressed
sequence Sout = RAKE(Sin) = [10101101010] of 11 bits.

As proved in [29], the optimal value of T for a n-bit
sequence with k set bits can be obtained by the following
equation

T ∗ = (
n

k
− 1) · ln(2) (1)

Note that the value of T is necessary to re-obtain the original
sequence. Therefore, in order to reduce the related overhead,
T is constrained to be a power of two, i.e. T = 2b where
b = dlog2(T ∗)e. In this case T can be derived from b which
in turns can be encoded with only dlog2(log2(nk ))e bits, i.e.,
a negligible number of bits in comparison to the length of the
compressed string. Finally, it is worth observing that b can be
obtained from the maximum codeword length L as b = L− 1.

B. Using the RAKE algorithm for compression of EEG signals

Henceforward, we assume that EEG signals are sampled at
fs Hz and that samples are represented with integer numbers
of w bits each. For most commercial EEG systems, w is either
12, 16 or 24 bits. We further assume that EEG signals are
processed in blocks of N ×M samples, where N is equal to
the number of EEG channels and M = Tfs is the number of
samples acquired, for each channel, in a time interval T . Note
that M can be fixed according to available storage resources.

We indicate the generic block as a matrix X = [xij ], where
i ∈ {1, ..., N} and j ∈ {1, ...,M}.

In order to apply the RAKE algorithm, we have to transform
the set of acquired EEG samples xij into sparse binary strings.
For this purpose we proceed according to the following steps:

1) As first step, starting from X , we obtain the matrix
X̃ = [x̃ij ] whose elements are

x̃ij = F · round(xij
F

) (2)

where round() is the integer rounding operator and
F is an integer factor fixed according to the desired
distortion. We derive the relation between F and PRD
in the next subsection.

2) In the second step, we obtain a matrix D = [dij ] whose
elements are differences of adjacent samples.
More precisely, we indicate with diff(A) and A′ re-
spectively the matrix of column differences and the

1151



transpose of a generic matrix A and define the matrix
of differences D as

D =

[
x̃11 diff(X̃ ′1:)

′

diff(X̃:1) diff(diff(X̃ ′)′)

]
(3)

where X̃:1 and X̃1: are, respectively, the first column
and the first row of X̃ .
Note that X̃ can be exactly recovered from D as

X̃ = cumsum(cumsum(D)′)′ (4)

where cumsum() represents the cumulative sum of
column elements.
Basically, D reduces both temporal and spatial redun-
dacy of EEG signals and thus reduces the number of
bits needed to represent X̃ .

3) Starting from D, we obtain the matrix Z = [zij ] whose
elements are

zij =

{
2 · |dij | if dij ≥ 0

2 · |dij | − 1 if dij < 0
(5)

It is worth noting that all elements of Z are non-negative
numbers and that eq.(5) is invertible, i.e. D can be
reobtained from Z. In fact, by representing zij as a
binary word, i.e., [z(wz−1)

ij , ..., z
(0)
ij ] where z(l)ij are either

0 or 1, we have

dij =

{
zij/2 if z(0)ij = 0

−(zij + 1)/2 if z(0)ij = 1
(6)

Henceforward, we indicate with wZ the maximum num-
ber of bits needed to represent the elements of Z and
with Z(l) = [z

(l)
ij ] thet l-th bit plane of Z, i.e., the binary

matrix obtained considering only the l-th bits of the
elements zij . Note that l ∈ [0, wZ − 1].

4) In this step we apply the RAKE algorithm to each of the
binary matrices Z(l). More precisely, we consider each
matrix Z(l) as a binary string of N ×M bits and apply
the RAKE algorithm to obtain the compressed string
Z

(l)
c = RAKE(Z(l)). In practice, we observed that the

RAKE algorithm provides significant compression only
if the number of set bits k satisfies k ≤ 0.25 · N ·M ;
therefore, every time that k > 0.25 · N ·M holds, we
avoid compression by simply considering Z(l)

c = Z(l).
5) Finally, the compressed representation Xc of the original

block X is obtained by concatenating all the compressed
strings Z(l)

c derived in the previous step, preceded by an
header H needed for reconstruction. More precisely, the
header H contains the value of wZ and dimensions Ll of
the codewords used by the RAKE algorithm to encode
Z(l), so that at the end the compressed block is Xc =

[H,Z
(wZ−1)
c , ..., Z

(0)
c ] with H = [wZ , LwZ−1, ..., L0].

It is worth mentioning that the codeword length Li is
set to 0 when the RAKE algorithm is not applied, i.e.,
when Z(i)

c coincides with the binary matrix Z(i).
Note that, when F = 1 holds, the proposed algorithm

is a lossless compression algorithm, i.e., X can be exactly

recovered from Xc. In fact, considering that RAKE is a loss-
less compression algorithm and that matrix transformations
introduced in steps 2 and 3 are invertible, it follows that X̃
can be always exactly recovered from Xc; moreover, when
F = 1 holds, accordingly to (2) we have x̃ij = xij and thus
X = X̃ .

C. On the choice of the rounding factor F

In this subsection we derive the relation between the round-
ing factor F and the distortion PRD defined by the following
equation

PRD% = 100 ·

√√√√∑N
i=1

∑M
j=1(xij − x̃ij)2∑N

i=1

∑M
j=1 x

2
ij

(7)

where xij are original EEG samples and x̃ij are given by
eq.(2).

Let us observe that the PRD can be rewritten as

PRD% = 100 ·

√∑N
i=1

∑M
j=1 ε

2
ij

||X||
(8)

where εij = xij − x̃ij and ||X|| =
∑N
i=1

∑M
j=1 x

2
ij is the

Frobenius norm of the matrix X .
According to (2), the error εij = xij − x̃ij lies in the range

[−δ,+δ], where δ = bF2 c.
We assume that errors εij are independent and uniformly

distributed random variables so that E(εij) = 0 and E(ε2ij) =
F 2

12 , where we have indicated with E() the expectation
operator. Moreover, under the same hypothesis, we have
E(
∑N
i=1

∑M
j=1 ε

2
ij) = NM F 2

12 and thus E(PRD%) = 100 ·√
NM
12 ·

F
||X|| .

Therefore, given a desired distortion PRDthr, the rounding
factor F needed for the first step of the proposed algorithm
can be fixed according to the following equation

F =

√
12 · ||X||

100 ·
√
NM

· PRDthr% (9)

III. EXPERIMENTAL RESULTS

We applied the proposed algorithm to different datasets
representing real-world EEG signals. All datasets investigated
are open access and can be freely downloaded from the official
website of the BNCI Horizon 2020 project [31], an european
project focused on brain-computer interfaces. Among the 28
available datasets, we considered 4 datasets (DS14,DS15,DS17
and DS19) obtained with 16-bit EEG recording systems and
other 2 datasets (DS22 and DS27) with higher resolution, i.e.,
24 bit. We reported a short description and the number of EEG
channels available for each dataset in Tab. I.

For all datasets investigated, we applied the proposed al-
gorithm considering blocks of M = 1000 samples for each
channel and evaluated the compression ratio (CR) according
to the relation

CR =
# bits BEFORE compression

# bits AFTER compression
(10)
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TABLE I
INFORMATION OF INVESTIGATED DATASETS.

Data Set ID Short description (and file name) Number of EEG Channels (N ) Samples per channel Resolution (w)
DS14 Covert shifts of visual attention (VPiac.mat) 60 657660 16
DS16 Motion VEP Speller (MVEP VPfat.mat) 63 205132 16
DS17 Center Speller (VPiac.mat) 63 777820 16
DS19 RSVP speller (RSVP VPfat.mat) 63 492552 16
DS22 Monitoring error-related potentials (Subject01 s1.mat) 64 91648 24
DS27 Reach and Grasp movement decoding (V01.mat) 32 797514 24

TABLE II
A FEW REPRESENTATIVE EEG COMPRESSION ALGORITHMS

Reference Techniques used CR Distortion (PRD%)
[12] Vector quantization and Huffman encoding 2.63 lossless
[13] Percepton-based predictor and Arithmetic Coding 2.62 lossless
[14] Karhunen-Loeve transform 2.84 lossless
[16] Correlation dimension based predictor 3.20 lossless
[18] Neural network adaptive error modeling 3.23 lossless
[22] Matrix and tensor decomposition 4.96/12.13 2.0/5.4
[23] Independent Component Analysis and wavelet transform (SPIHT) 4.58/9.11 0.27-7.28/0.92-7.66
[24] Singular Value Decomposition 5 5
[30] Neural network predictor and Arithmetic Coding 6.5 7.0
[19] Wavelet transform 9.13 5.25
[27] Universal prediction and multivariate recursive least squares 6.67/8.56 0.39/0.75

TABLE III
COMPRESSION RATIO (CR), ACTUAL DISTORTION (PRD) AND

NORMALIZED MAXIMUM ABSOLUTE ERROR (NMAE) ACHIEVED FOR
DIFFERENT DATASETS IN THE CASE OF PRDthr = 2%.

Dataset w CR Actual PRD (%) NMAE
DS14 16 7.83 2.00 0.0057
DS16 5.69 2.00 0.0067
DS17 4.61 2.00 0.0047
DS19 4.53 2.00 0.0039
DS22 24 185.59 2.02 0.0009
DS27 149.62 2.01 0.0085
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Fig. 2. Compression ratios for different datasets and different values of
PRDthr

In Tab. III we reported the compression ratio achieved by
the proposed algorithm for PRDthr = 2%. In the same
table we reported also the actual PRD, i.e. the PRD achieved
after reconstruction and evaluated according to (7), and the
normalized maximum absolute error, i.e. NMAE = δ

2w−1 .
As it is possible to observe, compression ratios in the order

of 150 can be achieved with the proposed algorthm in the case
of 24-bit datasets and PRDthr = 2%.

Obviously, the CR decreases for lower values of PRDthr

Fig. 3. Example of original and recovered EEG signals (PRDthr = 2%)

and increases for higher values of PRDthr, as it is possible
to observe in Fig. 2 where we reported compression ratios ob-
tained for different values of PRDthr, i.e. 0.5%, 2% and 5%.

In the case of 16-bit datasets and PRDthr between 2% and
5%, a compression ratio between 4.53 and 11.34 is achieved,
depending on the specific dataset. For sake of completeness, in
Fig. 3 we show a pair of original and recovered EEG signals
for one block of DS14 compressed with PRDthr = 2%.

Note that several state-of-the-art compression algorithms
achieve similar compression ratios for the same distortion
level (see Tab. II). Nevertheless, in the case of the proposed
algorithm, neither wavelet transforms nor singular value de-
composition are used. Therefore, the proposed algorithm can
be implemented even in simple processing units commonly
used for wearable EEG monitoring systems.

A few better near-lossless compression algorithms exist in
literature able to achieve similar CR but with lower distortion.
For instance in [27], a CR of 8.56 with a distorsion lower
that 1% has been achieved using multivariate recursive least
squares (RLS). However, floating-point RLS is not feasible
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TABLE IV
ACTUAL PRD OBTAINED AFTER RECONSTRUCTION

PDRthr% DS14 DS16 DS17 DS19 DS22 DS27
0.5 0.50 0.50 0.50 0.50 0.51 0.50
2.0 2.00 2.00 2.00 2.00 2.02 2.01
5.0 5.00 5.00 5.00 5.00 5.16 4.97

for wearable EEG systems due to energy consumption and
memory constraints. Instead, the proposed solution, mostly
based on a simple encoding scheme and arithmetic operations,
is suitable even for low-cost microcontroller-based EEG mon-
itoring systems.

Finally, it is also worth noting that, differently from several
other lossy and near-lossless compression algorithms, the
proposed algorithm allows to fix a priori the desired distortion.
In fact, as shown in Tab. IV, the actual PRD evaluated after
reconstruction almost coincides with the a-priori fixed thresh-
old PRDthr. Experimental results, omitted for sake of space,
confirm that errors are uniformly distributed in [−F2 ,+

F
2 ].

IV. CONCLUSIONS

In this paper we have presented a simple and effective
near-lossless compression algorithm for multichannel EEG
recording systems. Using only simple counting and arithmetic
operations, the algorithm is able to achieve performance
comparable with other more complex state-of-the-art solutions.
Considering its inherent low complexity, the proposed algo-
rithm is well suited for wearable EEG monitoring systems
based on resource constrained microcontrollers. As future
works, we will better investigate computational complexity of
the proposed algorithm and we will evaluate its performance
with other kind of biomedical signals.
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