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Abstract—Owing to minor modifications of the optical setup,
Random Illumination Microscopy (RIM) surpasses the resolution
limit of a standard fluorescence microscope. RIM uses speckle
illuminations of the sample to derive a single variance image
from the resulting diffraction-limited acquisitions. Variance-
matching iterations then produce a super-resolved estimate of the
sample. Here, we demonstrate that in the noiseless case, variance-
matching yields a unique solution for the set of spatial frequencies
corresponding to a doubled resolution limit. A similar result
was already proven for covariance-matching, but covariance-
based iterations are not implementable in practice, due to
the huge size of the covariance matrix and to the induced
numerical complexity. Our new identifiability result is a strong
theoretical evidence supporting the super-resolution capability of
the variance-matching version of RIM.

Index Terms—Computational imaging, Quadratic inverse
problems, Multi-illumination imaging, Super-resolution, Cutoff
frequency, Second-order statistics, Variance, Optical microscopy

I. INTRODUCTION

Fluorescence microscopy is an indispensable tool in cell
biology but its lateral resolution, limited by diffraction to about
300 nm for the best set-ups, remains generally insufficient
for following the dynamic interplay of the cell constituents.
Several super-resolution (SR) microscopy approaches have
been proposed in the last twenty years [1] to tackle this issue,
among which the best compromise between high resolution
and practical in-vivo imaging is Structured Illumination Mi-
croscopy (SIM) [2], [3]. SIM consists in recording several
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low-resolution images of the sample under different positions
and orientations of a known periodic illumination. The role
of the periodic illumination is to down-modulate previously
inaccessible sample high spatial frequencies into the Fourier
support of the observation Point Spread Function (PSF).
After some straightforward manipulations, a correspondence
can be found between SIM low-resolution images and the
spatial frequencies of the sample over an enlarged Fourier
support which can reach twice that of a widefield fluorescence
microscope. Yet, this identifiability requires the knowledge and
thus a tight control of the illumination patterns which limits
SIM application to weakly scattering samples and complexifies
the experimental set-up [4].

In order to release this major constraint, it has been pro-
posed to replace the periodic illumination of SIM by random
uncontrolled speckles [5], [6]. A speckle is the light pattern
formed when a coherent beam (laser) is reflected or transmitted
by a random diffusive medium. The key property of random
speckle illumination is that its statistics (average and covari-
ance) are perfectly known and, furthermore, insensitive to
aberrations and scattering. Random Illumination Microscopy
(RIM) is thus expected to be easier to use than SIM, as it does
not require the control of the illumination, with an extended
application domain, as it is insensitive to aberrations on the
excitation side. Yet, contrary to SIM, the ability to extract
the spatial frequencies of the sample over an enlarged Fourier
support from the low-resolution speckled images of RIM is
not a straightforward issue.

Recently, we have shown mathematically that, provided the
frequency support of the speckle patterns is similar to that of
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the PSF, the theoretical SR capacity of RIM is identical to
that of SIM [7]. Our demonstration exploited the statistical
covariance matrix of the recorded speckled images, which
was shown to depend quadratically on the sample fluorescence
and on the known speckle covariance and PSF. Yet, although
theoretically appealing, this approach could not be transformed
into a realistic numerical scheme as images of 1000 × 1000
pixels generate a covariance matrix of size 106 × 106 which
is not tractable on modern computer systems.

In this letter, we prove a new result about RIM that
reconciles the theoretical SR capacity and an affordable com-
putational burden. Indeed, under fairly realistic assumptions,
we mathematically show that the statistical variance of the
recorded images is sufficient to recover an image of the sample
with the same SR factor as covariance-based RIM.

Second-order statistics being quadratic functions of the
unknown sample, the issue of retrieving spatial frequency
components of the latter from either the variance or the
covariance of the speckle images belongs to the family of
quadratic inverse problems (QIP) [8]. As a consequence, it
is substantially more difficult to formally characterize the SR
capacity of RIM, compared to SIM.

Let us also mention that variance-based microscopy using
speckle illuminations has been already proposed, either for
its sectioning properties [9], or in the context of super-
resolution [10]. However, to our best knowledge, our con-
tribution is the first one to mathematically characterize the
super-resolution property of variance-based RIM.

In Section II, we introduce a mathematical description of
the image model. For sake of self-consistency, we also recall
known results for covariance-based RIM. Our novel result
concerning variance-based RIM is presented in Section III,
and elements of discussion are given in Section IV.

II. PHYSICAL ASSUMPTIONS AND KNOWN RESULTS

A. Imaging model

For the sake of clarity, we restrict ourselves to the case of
two-dimensional samples, and we formulate the problem in
a fully discrete setting, where both the recorded images and
the sample are represented on fine grids, with a sampling rate
common to both. RIM images can then be modelled by:

zm = ym + εm, (1)

with

ym =H (ρ ◦ Im) , (2)

where εm is a random variable modeling an additive noise,
ym is a vectorized image corresponding to the mth speckle
illumination Im, H a convolution matrix corresponding to
a convolution by the Point Spread Function (PSF) h of the
microscope, ρ the fluorescence density map to recover, and ◦
the Hadamard (i.e., entrywise, or Schur) matrix product [11,
Chapter 5].

When the speckle illuminations are fully developed, the
speckle covariance Cov(Im) = C is a known convolution
operator [12]. Then, the covariance matrix of zm reads

Γz(ρ) = Γy(ρ) + Γε, (3)

with
Γy(ρ) =HDiag(ρ)CDiag(ρ)Ht. (4)

The variance identifies with the diagonal of the covariance
matrix vz(ρ) = diag(Γz). Assuming the noise covariance
Cov(εm) = Γε is known, the knowledge of vz is thus
equivalent to that of

vy = diag(Γy). (5)

Hereafter, we refer to vy and Γy as v and Γ, respectively.
In this document, we assume that the illumination and

observation of the sample are performed through a perfect
optical mounting so that H and C are nonnegative definite
convolution operators defined by the Airy functions h and
c [13, Sec. 4.4.2] with frequency cut-off fPSF = 2NAobs/λobs
and fspec = 2NAill/λill respectively, with NAobs(ill) the
numerical aperture of the observation (illumination) objective
and λobs(ill) the emission (excitation) wavelength.

Since our goal is to demonstrate a factor two in terms
of super-resolution, the sampling rate of the object must
be at least four times the cutoff frequency imposed by the
PSF. In the rest of this document, we make use of the
following notations: fPSF ≤ 1/4 denotes the normalized cutoff
frequency imposed by the PSF, and

G =
{
ν ∈ Rd, ‖ν‖∞ < 1/2

}
∩
{
n/N,n ∈ Zd

}
denotes the d-dimensional normalized frequency grid limited
by the Nyquist frequency (d = 2 for 2D imaging). Here,
we assume that RIM acquisitions zm are made of N = nd

elements. Then each of them can be decomposed over the
set of discrete frequencies DPSF = D(fPSF), where D(f)
is a generic notation for the “discrete interior” of a ball of
radius f :

D(f) = {ν ∈ G, ‖ν‖ < f}.

B. Covariance-based RIM

In the 2D case, [7] obtains that the knowledge of Γ allows to
retrieve the frequency components of ρ within the ball DSR =
D(2fspec), provided that fspec ≤ fPSF. When fspec = fPSF,
we have DSR = D(2fPSF), which exactly corresponds to an
SR factor equal to two.

Theorem 1. Let ρ be any entrywise nonnegative vector of size
N . For any entrywise nonnegative solution q to the quadratic
system Γ(q) = Γ(ρ), the frequency components of q coincide
with that of ρ in DSR.

Proof: The fact that all frequency components in DSR

can be retrieved from Γ(ρ) is based on a unicity argument
for the factorization. We recall that any nonnegative definite
operator admits a unique, well-defined square root matrix and
that H and C are nonnegative definite convolution operators
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while Γ(ρ) is a nonnegative definite operator. The covariance
Γ (ρ) can be cast as

Γ(ρ) =HDiag(ρ)CDiag(ρ)H (6)

=HDiag(ρ)
√
C
√
CDiag(ρ)H. (7)

If fspec ≤ fPSF, one can find a nonnegative convolution
operator A such that AH = HA =

√
C. Then, we can

identify the square root of AΓ(ρ)A to
√
CDiag(ρ)

√
C.

Noting that diag(
√
CDiag(ρ)

√
C) = c2 ?ρ where ? is the

convolution product, we conclude that the knowledge of Γ(ρ)
uniquely determines the spectral components of ρ in DSR.

We also stress that this result is tight when fspec = fPSF

(and in particular in the case H = C) since the frequency
components of q outside D(2fPSF) are not identifiable, ac-
cording to the following proposition.

Proposition 1. Let ρ be any vector of size N . Then Γ(ρ+δ) =
Γ(ρ) for any vector δ with no components in D(fPSF+fspec).

Proof: For any vector δ with no components in D(fPSF+
fspec), each column of matrix Diag(δ)C has no frequency
components in DPSF, so HDiag(δ)C = CDiag(δ)H = 0.
As a consequence,

Γ(ρ+ δ) =HDiag(ρ+ δ)CDiag(ρ+ δ)H

= Γ(ρ) + Γ(δ) +HDiag(ρ)CDiag(δ)H

+HDiag(δ)CDiag(ρ)H

= Γ(ρ).

III. VARIANCE-BASED RIM

A. Super-resolution from variance equations

The quadratic system of Theorem 1 is made of 1
2N(N +1)

real equations, for only M free real-valued variables, where M
stand for the cardinality of DSR. Since M ≤ π

4N in 2D (and
M ≤ N in 1D), there is room left for a refined identifiability
result, using a smaller number of equations.

Here, we show that the N variance equations are sufficient
to uniquely determine the M frequency components in DSR,
provided that ρ is an entrywise positive vector and that
H = C. This last condition is satisfied if the illumination and
observation are performed through the same objective and that
the Stokes shift is neglected.

This important result is easily deduced from two technical
results, Lemmas 1 and 2, which we derive first.

Let us define

Mx =HDiag(x)H,

Bx =H ◦Mx,

In particular, for a given object ρ, the (noiseless) data variance
vector (5) is given by v(ρ) = Bρρ according to the matrix
identity [14]:

diag
(
ADiag(x)Bt

)
= (A ◦B)x = (B ◦A)x. (8)

Lemma 1. For any two real solutions ρ and q to Eq. (5), we
have ρ− q ∈ Ker(Bρ+q) and ρ+ q ∈ Ker(Bρ−q).

Proof: Let us define the bilinear vector-valued function:

f(x,y) = diag
(
HDiag(x)HDiag(y)H

)
, (9)

so that
f(x,y) = Bxy = Byx (10)

and v(ρ) = f(ρ,ρ). Each component of f is a symmetric
form, since f(x,y) = f(y,x).

Indeed,

f(ρ+ q,ρ− q) = f(ρ,ρ)− f(q, q) + f(q,ρ)− f(ρ, q)
= v − v + f(q,ρ)− f(q,ρ)
= 0. (11)

Combining Equations (10) and (11), we obtain

Bρ+q(ρ− q) = Bρ−q(ρ+ q) = 0,

which proves the assertion.

Lemma 2. For any vector x with positive entries, Ker(Bx)
is the linear span of frequency components outside DSR.

Proof: Let Kmin = min(x), so that xmin = x − Kmin

is entrywise nonnegative. We have Bx = KminG + Bxmin
,

with G = H2 ◦ H . For all z ∈ Ker(Bx), we have
ztBxz = ztGz + ztBxmin

z = 0. Now, the matrices G
and Bxmin , which are the Hadamard product between two
nonnegative definite matrices, are also nonnegative definite
according to the Schur product theorem [11, Theorem 5.2.1].
Therefore, Ker(Bx) = Ker(G) ∩Ker(Bxmin

) ⊂ Ker(G).
Similarly, let Kmax = max(x), so that xmax = Kmax − x

is entrywise nonnegative. We have Bx = KmaxG −Bxmax ,
and Bxmax

and Bx are both nonnegative definite. For all
z ∈ Ker(G), ztBxz = −ztBxmax

z, where the lhs and the
rhs are nonnegative and nonpositive, respectively. We conclude
that ztBxz = 0, so Ker(G) ⊂ Ker(Bx). Recalling that
Ker(Bx) ⊂ Ker(G) we have demonstrated that Ker(Bx) =
Ker(G). Now, matrix G is a convolution operator with kernel
g = (h?h)◦h, with g̃ = (h̃◦h̃)?h̃ the Fourier transform of g.
The filter g̃ has nonzero components for all spatial frequencies
belonging to DSR. The kernel Ker(G) is the linear span of
frequency components outside DSR.

Finally, let us consider two entrywise positive solutions ρ
and q to Eq. (5). According to Lemma 1, we have ρ − q ∈
Ker(Bρ+q), where ρ + q is entrywise positive. Therefore,
we can conclude from Lemma 2 that ρ − q is in the linear
span of frequency components outside DSR. Moreover, we
know from Proposition 1 that the frequency components of q
outside DSR have no impact on the data covariance, and hence
on its diagonal. These results are summarized in the following
theorem, providing the new identification result we aimed at.

Theorem 2. Let ρ be any entrywise positive vector of size
N . For any entrywise nonnegative solution q to the quadratic
system of N equations v(q) = v(ρ), the frequency compo-
nents of q coincide with that of ρ in DSR, while the frequency
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components of q outside DSR remain arbitrary (up to the
nonnegativity constraint on the entries of q).

Several comments can be made about this variance-based
result, compared to its covariance-based counterpart. First,
we stress that Theorem 1 holds if fPSF = fspec whereas
Theorem 2 requires that the matrices H and C are identical
(for the matrixBx to be nonnegative definite) This condition is
more stringent. Actually, we have found a small size counter-
example with fPSF = fspec, and where the N variance
equations admit two distinct entrywise positive solutions. This
indicates that the assumptions of Theorem 2 are somewhat
tight. A natural perspective would be to investigate if the
identification result could be retrieved with H 6= C thanks to
short-range correlations added to the variance.Note however
that, if one has access to the raw images given by Eq. (2), it
is always possible to filter the images such that H becomes
C provided fPSF ≥ fspec.

Another important difference between Theorems 1 and 2
concerns the fact that strict positivity of the sample is needed
in the latter case. We have some preliminary results showing
that this condition could be relaxed, but the maximal number
of zero entries allowing a provable super-resolution is currently
indeterminate.

IV. CONCLUSION

This paper provides a mathematical proof that the super-
resolution capacity of random illumination microscopy still
holds when only the statistical variance of the recorded low-
resolution speckled images is considered instead of the full
covariance. Such a theoretical result meets practical evidences
recently obtained concerning 2D variance-based imaging ap-
plied to various types of biological samples [15].

As an important final remark, we note that a formal exten-
sion of our new identification result to the three-dimensional
(3D) case is straightforward, with the benefit of an axial super-
resolution effect, on top of the lateral one obtained in 2D.
Real-world applications would consist in recording multiple
speckled images of the sample at different depths. This can be
done in a sequential manner, by translating the sample through
the focal plane, or simultaneously using a multifocus system
[16]).
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