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Abstract—As a naturalistic form of communication, direct-

speech brain-computer interfaces (DS-BCIs) give users the 

possibility of ‘reading the mind’. The understanding of brain 

processing in the spoken speech is the bridge to the ideal DS-

BCI, and lexical tones as an important element in tone languages 

like Mandarin are desirable to be well explored. This work 

studied the classification of four Mandarin tones in spoken 

speech by using electroencephalogram (EEG). Specially, a 

speech pronunciation experiment was performed to include 

imagined, intended, and spoken states. The multiple 

combinations of vowels, consonants, and tones constituted 

monosyllables as the stimuli. Common spatial pattern (CSP) and 

Riemannian manifold were used as feature extraction methods, 

and linear discriminant analysis as classifier. Result showed that 

the four-class classification accuracy of the Riemannian 

manifold-based method across all participants was 42.9%, 

which was 12.3% higher than that of the CSP-based method. 

This work suggested that the spoken Mandarin tones were 

decodable with corresponding EEG signals. 
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I. INTRODUCTION

Brain-computer interface (BCI) systems in recent studies 
often used indirect approaches (e.g., motor imagery [1], P300 
and steady-state visual evoked potentials [2], etc.) to control 
external devices (e.g., keyboard [3], screen cursors [4], 
wheelchairs [5], etc.). Although the results of these methods 
were effective, the relatively low information transmission 
rate and additional user training were clear limitations. 
Meanwhile, the direct interaction in BCI systems attracted the 
attention of many studies in these years [e.g., 6-8]. 

Speech is considered as one of the most intuitive 
communication forms in daily life. Decoding the speech 
pronunciation process is helpful to the design of the direct-
speech BCI (DS-BCI). Three types of speech used in the 
experiments have been categorized [9], namely as imagined, 
intended, and overt. The imagined speech is to imagine the 
pronunciation of words without any outputs. The intended 
speech results in the corresponding movement of articulators, 
but does not produce any audible output either. The overt 
speech is the natural speech production. The DS-BCI based on 
imagined speech is the ideal system. However, there are 
challenges for speech types without sound [10]. First of all, it 
is difficult to distinguish the speech parts from the non-speech 

parts in brain signals. Then, the temporal information of 
speech is absent. In addition, the lack of auditory feedback 
also makes studies difficult. Therefore, most relevant studies 
focused on overt speech. 

The brain signals of phoneme pronunciation “BA/WA” or 
“RA/LA” had been successfully classified by Blakely et al. 
[11]. By using local field potential (LFP), Kellis et al. 
classified a small set of words at well above chance levels[12]. 
Speaking five Japanese monophthongal vowels was the task 
of Ibayashi et al.’s research [13]. Single-unit activity (SUA), 
LFP, and electrocorticography (ECoG) were recorded 
simultaneously, and their accuracies of vowel classification in 
each recoding technique were 37.7%, 40.7%, and 41.0%, 
respectively. Ramsey et al. [14] classified four spoken 
phonemes. The classification accuracy reached 71.9%, based 
on 30 repeated times for each task. These works concentrated 
on the stimuli like single phoneme, vowel, and word. Mugler 
et al. focused on the spoken phoneme classification within 
different words [15]. The study completed by Pei et al. 
decoded vowels and consonants separately from spoken 
monosyllables with consonant-vowel (CV) pairs [16]. The 
above two studies were more complex and challenging. So far, 
plenty of spoken speech classification studies had been 
performed with phonemes, vowels, consonants, etc., but not 
lexical tones.  

For tone languages like Mandarin, tones are very 
important in recognizing and understanding Chinese. They 
carry a large amount of intelligibility information [17]. 
Different tones give distinct meanings to individual syllables 
[18]. Each character in Chinese corresponds to one syllable. 
Each Mandarin syllable consists of the initial sound, final 
sound, and tone. Consonants are initial sounds and vowels are 
at the end. Mandarin has four tones, usually expressed as tone 
1, tone 2, tone 3, and tone 4 [19-20]. The first tone is a high, 
even, and constant tone. The second tone is a rising tone that 
grows stronger. For the third tone, it is falling and fading 
firstly, and then rising and growing strong. The fourth tone is 
a quickly falling and fading tone. A lot of works [e.g., 18, 21] 
explored the neuropsychological mechanisms of lexical tones. 
Their results showed the different lateralization in tone 
processing of brain activities. Hence, it is potential to decode 
spoken tones in syllables using brain signals. 

This work aimed to investigate whether the EEG signals 
of four spoken Mandarin tones were decodable. Since the 
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overt speech has audible output and its exact speaking time is 
clear, the corresponding brain activity time can be constrained. 
This work recorded non-invasive EEG signals during the 
imagined, intended, and spoken states. The features of EEG 
data in the spoken state were extracted by the spatial-based 
common spatial pattern (CSP) method and the Riemannian 
manifold method, and classified by a linear discriminant 
classifier. 

II. METHODS 

A. Subjects 

Eleven (four females and seven males, aged from 20 to 30 
years, mean age ± SD = 22.6 ± 3.2) participants were recruited 
from Southern University of Science and Technology. Ten 
participants were used in the analysis. All participants 
identified Mandarin as their first language and spoke 
Mandarin at a fluent level. All of them were in good health 
condition, and had no history of neurological or psychological 
disorders. The informed written consents were given before 
their participations. The experimental procedures were 
approved by the Institution’s Ethical Review Board of 
Southern University of Science and Technology. 

B. Stimuli and Experimental Paradigm 

The stimuli consisted of seventy monosyllable words. 
Fifty-four of these seventy words were composed of one of 
four different vowels (i.e., /a/, /i/, /u/, and /ü/) with four tones 
and one of five consonants (i.e., /b_/, /f_/, /j_/, /l_/, /m_/). The 
other words were four different single vowels with four tones. 
These vowels are well separable in formant space and mouth 
shapes. The chosen consonants are the representation of 
plosives, nasals, fricatives, laterals, and affricates in Mandarin 
consonants. The number of stimuli in tone 1 is sixteen, and 
that in other tones is eighteen.  

To avoid the confusion in pronunciation, the pseudowords 
whose pronunciations do not exist in Mandarin were rejected 
(i.e., /lü/, /mu/ in tone 1, and /bü/, /fi/, /ja/, /ju/, /mü/ in all four 
tones). The list of all monosyllabic words was shown in Table 
Ⅰ.  These vowels, consonants, and tones were integrated into a 
consonant-vowel-tone (CVT) structure. In this structure, each 
word was uniquely identified. 

To better signal quality and reduce the fatigue of the 
subjects, the whole experiment was self-controlled by subject 
to determine the start of each trial. The schematic diagram of 
the experimental paradigm is shown in Fig. 1.  

Each trial consisted of seven states: 

• A prepared state, where the participant was instructed 
to prepare for this trial. The text ‘Ready?’ was shown 
on the screen. The participant pressed any button to 
start this trial when s/he was ready. 

• A 3-second rest state. The participant needed to relax, 
look at the center of the black screen, restrain any 
movements, and clear any thoughts. 

• A 1.5-second stimulus state. The auditory utterance 
was played about 700 ms from earphones at first. It 
was recorded by a female native Mandarin speaker. 
The remaining time was in silence. 

• A 2-second imagined state, where a white cross 
symbol ‘+’ appeared at the center of the screen. The 
participant imagined the pronunciation of the stimulus 
once without any articulator movements. After this 
state, a 1-second gap without symbol display was 
settled to show the completion of this state. 

• A 2.5-second intended state. A star symbol ‘*’ was 
shown in this state. The participant was instructed to 
silently utter the stimulus without producing any overt 
speech. The 1-second gap was also settled. 

• A 2.5-second speaking state. A hash ‘#’ symbol 
appeared at the center of the screen. The participant 
needed to speak out stimulus loudly and clearly. A 
microphone was used to record the spoken speech. 

• A report state. The participants needed to report the 
completion of each state by using buttons. 

The whole experiment was conducted in an acoustically 
and electrically shielded chamber. The stimuli and audios 
were recorded at a sampling rate of 16 kHz. All participants 
sat down in a comfortable chair and stared at the symbol on 
the computer screen. They performed once naturally in 
imagined, intended and spoken state, like what they heard in 
stimulus state. 

Before the formal experiment began, the participant was 
trained to be familiar with the experimental procedure. For 
each participant, five blocks were expected to be completed. 
The break time between two blocks was about 15 minutes. In 
each block, all seventy trials were displayed in a pseudo-
random order and not repeated. The orders were different 
among the five blocks. 

C. Data Collection and Pre-processing 

The scalp EEG signals were recorded from a 64-channel 
electrode cap (Neuroscan Inc.). The sampling rate was 500 Hz. 
The extended 10-20 system was used to place the scalp 
electrodes in the right place. The electrode on the forehead 
was regarded as the ground. The reference channel was an 
electrode attached to the nose tip. Two additional reference 
electrodes were placed at the bilateral mastoids. To measure 
the electrooculography (EOG) signals, two electrodes were 

 
Fig. 1. The schematic of the experimental paradigm 

TABLE I.  LIST OF MONOSYLLABIC STIMULI 

CV b_ f_ j_ l_ m_ _ 

/a/ ba fa  la ma a 

/i/ bi  ji li mi i 

/u/ bu fu  lu mu u 

/ü/   ju lü  ü 
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attached above and below the left eye. During the whole 
experiment, all electrode impedances were less than 5 kΩ. 

EEGLAB 13.5.4b [22] was used to analyze the recorded 
EEG data. Firstly, the raw data were re-referenced using the 
channels of bilateral mastoids. Then, an FIR bandpass filter 
with cut off frequencies 0.5 and 70 Hz was applied. A notch 
filter with cut off frequencies 49 and 51 Hz was used to 
remove the power line noise. Independent component analysis 
(ICA) was implemented to remove other artifacts like 
electrocardiography (ECG), EOG, electromyography (EMG), 
etc. [23]. 

In this experiment, the 2500-ms EEG data of all channels 
in the speaking state was extracted and corrected with the 
baseline of 200-ms data before the speaking state start. The 
unusable data were deleted (e.g., the data with disordered 
marker, the uncompleted trials recorded in the report state, 
etc.). VOICEBOX toolbox in MATLAB was implemented to 
find the onset time. Based on the speaking time, the 2500-ms 
EEG data in each epoch were constrained to 800 ms, which 
started at the beginning of the overt speech. Most of the 
pronunciation time was covered among all subjects. The data 
of participant 6 was removed because of the massive bad 
blocks. The audio files in the first block of participant 11 were 
not saved correctly, and the relevant EEG data were also 
unavailable. 

D. Classification

The two methods based on CSP and Riemannian manifold
were used to classify the EEG signals of four spoken tones. 
The CSP-based method [24] is a widely used feature 
extraction method with many mature extensive applications. 
This method extracts EEG features by using spatial filters to 
maximize the variance of the data between classes and to 
minimize the variance within classes. The features with 16 
dimensions are extracted. 

The Riemannian manifold-based method [25-27] recently 
has been implemented on EEG classification tasks. In each 
epoch, the covariance matrices of EEG data are calculated and 

treated as sample points. Then they are projected to the 
Riemannian tangent space before fed into the classifier.  

Linear discriminant analysis (LDA) is the classifier for the 
above two methods. For each participant, the LDA model was 
determined from 80% of the data as a training set and tested 
on the remaining test set (i.e., 20% of the data). This 
classification procedure was then repeated 20 times. In each 
time, different 20% of the data were used as the test set. 

III. RESULTS

The tone classification accuracies based on the CSP and 
Riemannian methods are shown in the confusion matrices in 
Table Ⅱ and Ⅲ. In Table Ⅱ and Ⅲ, the cell with the best tone 
classification accuracy is marked in bold. The column labels 
correspond to the correct tone, and the row labels correspond 
to the predicted tone. The values in each cell are classification 
accuracies in percent and the standard deviation across 
subjects. The average tone classification accuracies are 30.6% 
and 42.9% for the CSP method and the Riemannian manifold 
method, respectively. Under the CSP method, the best 
classification accuracy among four tones is achieved with tone 
2, which is 34.4%. Tone 3 in the Riemannian manifold has the 
highest classification accuracy (i.e., 48.3%) compared with 
other tones. The accuracies of tone 1 in two methods are 21.4% 
and 37.4%, respectively, which are the minimal in both 
methods. The comparisons with Bonferroni correction were 
run between the accuracies of two feature extraction methods. 
The Bonferroni-corrected statistical significance level was set 
at p<0.01 (α = 0.05). Analysis revealed that the average 
classification accuracy under the Riemannian manifold 
method was significantly higher (p<0.01) than that under the 
CSP condition. 

IV. DISCUSSION AND CONCLUSION

This study carried out a Mandarin monosyllable 
pronunciation experiment combining imagined, intended, and 
spoken states. EEG signals of four spoken Mandarin tones 
were specially classified. The CSP and Riemannian manifold 
methods were used to extract features, and the classifier was 
based on LDA. To the best of our knowledge, no previous 
studies have demonstrated that four spoken Mandarin tones 
could be discriminated by using cortical EEG signals. It is 
difficult to directly compare our results with other 
multiclassification works as there were no common 
experiment materials and experimental paradigms among 
them. As shown in Table Ⅳ, single vowels [13] and single 
phonemes [14] were classified with 10 and about 30 repeat 
times of each trial, respectively. A large number of repeat 
times of the same trial increased the accuracy rate but reduced 
the complexity and challenge of the classification task. In [16], 

TABLE II.   CONFUSION MATRIX OF SPOKEN TONE CLASSIFICATION IN 

CSP METHOD 

Accuracy  
(%) 

Tone 1 Tone 2 Tone 3 Tone 4 

Tone 1 21.4±7.8 25.0±9.1 22.4±7.9 31.2±10.3 

Tone 2 19.1±6.4 34.4±12.5 22.2±8.5 24.3±9.2 

Tone 3 18.6±6.8 24.9±8.9 32.8±11.6 23.7±8.7 

Tone 4 21.7±7.4 23.5±8.0 22.1±7.4 32.6±11.1 

TABLE III.  CONFUSION MATRIX OF SPOKEN TONE CLASSIFICATION IN 

RIEMANNIAN METHOD 

Accuracy  
(%) 

Tone 1 Tone 2 Tone 3 Tone 4 

Tone 1 37.4±11.6 20.5±6.8 16.6±5.5 25.5±7.1 

Tone 2 20.6±5.6 40.5±16.8 21.4±8.7 17.5±8.0 

Tone 3 13.0±4.4 19.3±8.7 48.3±10.8 19.3±7.6 

Tone 4 20.1±5.5 18.7±7.2 16.5±5.9 44.7±8.9 

TABLE IV.    PERFORMANCE COMPARISON WITH OTHER STUDIES 

Ref. 
Recording 
Techniques 

Number of 
Classes 

Repeat 
Times 

Accuracy 

[13] 

SUA, 

LFP, 

 ECoG 

5 vowels 10 

37.7%, 

40.7%, 

41.0% 

[14] ECoG 4 phonemes ~30 71.9% 

[16] ECoG 
4 vowels, 

consonants 
in CVs 

~4 
40.7%, 

40.6% 

This study EEG 
4 tones in 
CVT pairs 

5 42.9% 
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4 vowels and 9 consonants embedded in spoken monosyllabic 
words were decoded from ECoG signals. The design of the 
present study was similar to [16]. The 4 classification 
accuracies in [16] for decoding vowels and consonants (i.e., 4 
of 9 pairs were calculated separately) across all subjects were 
40.7% and 40.6%, respectively. Compared with the results 
from [16], the results in this study (i.e., around 42.9% of 4-
tone classification accuracy in the Riemannian manifold 
method) look promising. Further, the experiment materials 
used in [16] contributed one variable in their classification. 
When 4 vowels were the targets, the consonants were variable 
and vice versa. In this study, when 4 tones were the targets, 
the consonants and vowels were two variables, which were 
more complex and made the present task more difficult for 
classification. Besides, compared with ECoG signals, EEG 
signals have a much lower signal-to-noise ratio and fewer 
available frequency bands for signal analysis [10], which 
make the multi-classification task even harder. Moreover, 
considering the invasive property of ECoG signals, the EEG-
based work is more suitable for future speech-related BCI 
studies. 

Over the past few years, some phonetic representations in 
brain activities, like phoneme and vowel but not tone, have 
been decoded very well [11-16]. The attention paid to tone 
does not match its importance in tone language. This study 
might be a start. Relative time-accurate brain activities were 
located in the speaking state. Further studies could focus more 
on other states, like intended and imagined states. 

In conclusion, this study demonstrated that the four 
Mandarin tones can be decoded in spoken consonant-vowel-
tone pairs using EEG signals. The classification accuracies of 
the Riemannian manifold method were higher than that of the 
traditional CSP method. 
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