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Abstract—Detection of interictal epileptiform discharges
(IEDs) from EEG signals is the mainstay of diagnosis of epilepsy.
The diversity in IED morphologies and their weakness deteriorate
the detection performance particularly when the IEDs of different
subjects are combined for training. Here, we propose an IED
detection system based on tensor factorization in which IEDs
with similar morphology are concatenated into the same slice of
a tensor. Applying the proposed method to the intracranial EEG
92.9% accuracy has been achieved. This shows that incorporat-
ing IED shape diversity into tensor factorization considerably
improves the results.

Index Terms—Epileptiform discharges, IED morphology, in-
tracranial EEG, spatial components, tensor decomposition

I. INTRODUCTION

Epileptic seizures occur due to excessive discharges of
groups of brain cells in the cerebral cortex or hippocampus.
In the diagnosis of epilepsy and localization of seizure onset
sources, both the interictal and ictal recordings are extremely
informative. Spikes and sharp waves, known as interictal
epileptiform discharges (IEDs), elicit between two seizure
onsets, detection of which is of great importance in the
diagnosis and management of epilepsy. EEG recordings are
able to capture the IED signatures [1].

IEDs are consisted of spikes, with the duration of 20-70 ms;
sharp waves, with the duration of 70-200 ms; and slow waves,
with a duration of longer than 125 ms. Therefore, in terms of
their morphology, IEDs can fall into five groups: (1) polyspike
complex: A sequence of two or more spikes which may or
may not be an epileptiform pattern; (2) sharp-and-slow-wave
complex: an epileptiform pattern consisting of a sharp wave
followed by a slow wave; (3) spike-and-slow-wave complex:
An epileptiform pattern consisting a spike followed by a
slow wave; (4) six Hz spike-and-slow-wave: Spike-and-slow-
wave complexes occurring generally in brief bursts bilaterally
and synchronously at 4–7 Hz, but mostly at 6 Hz; and
(5) multiple spike-and-slow-wave complex, An epileptiform
pattern consisting of two or more spikes associated with one
or more slow waves [2].

Multiway analysis (e.g., tensor decomposition) provides an
opportunity to simultaneously analyze multi-aspects of data

(e.g., time, space, frequency, segment, subject, and morphol-
ogy). It has been widely employed for EEG signal processing
[3] particulary epilepsy signal analysis [4], [5]. In [5], Stock-
well transform was employed to obtain frequency features, and
Tucker decomposition (TD) to decompose the tensor into its
factors and the core tensor. Then, the core tensor was used as
the EEG features for seizure detection. Spyrou et al. proposed
two IED detection methods based on TD to detect IEDs from
intracranial EEG (iEEG) [6] and scalp EEG [7]. To detect
epileptic and non-epileptic spikes, Thanh et al. [8] constructed
a four-way tensor of time, channel, frequency, and epileptic
segment and applied nonnegative TD for decomposition. They
projected epileptic and non-epileptic spikes onto the temporal,
spatial, and spectral factor matrices, and used the projected
segments for classification. We have already developed a
tensor-based method to incorporate uncertainty in IED labeling
into an automatic IED detection system [9].

Incorporating information that has diversity in their shapes
into the same slice of a tensor can deteriorate the factors
obtained using tensor decomposition. Due to this fact, Thanh
et al. [8] put only epileptic spikes in the fourth slab of the
tensor. However, the epileptic spikes or IEDs have various
morphologies and strengths. To the best of our knowledge,
there is no study to consider the impact of morphology of IEDs
in an automatic IED detection system. Therefore, we propose
a model based on tensor factorization to take the effect of IED
morphologies into account.

II. METHOD

Here, a tensor-based IED detection model is proposed. The
IEDs may share some spatial and morphological information
with each other. Nonetheless, the non-IED segments can be
non-epileptic spikes or normal brain activities, and hence there
is no common information among them. Therefore, the feature
space including only the IED segments can be more reliable
and discriminative. Furthermore, since the IED morphologies
can be different, we are interested in separating the IEDs with
different scores by exploiting their morphological diversities.
In this study, the IEDs are given a score based on their
morphology and spatial information by an expert epileptol-
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ogist. IEDs with similar scores are concatenated into a three-
way tensor with the dimensions of time samples, channels,
and IED segments of the same scores. Next, all three-way
tensors are concatenated into a single four-way tensor with the
dimensions of time, channel, IED segment, and morphology
(score). The CANDECOMP/PARAFAC decomposition (CPD)
algorithm developed by Acar et al. [10] is then employed to
extract the tensor factors (it should be noted that other tensor
factorization methods such as TD or block term decomposition
can be used instead). Finally, both IEDs and non-IEDs are
projected onto the spatial and morphological components to
achieve the most discriminative features. This model is called
IED detection based on spatial and morphological component
analysis exploiting the IED scores (SMCA-Sc).

Suppose we are given N1 IED segments with different mor-
phologies (scores) and N2 non-IED segments. We construct a
four-way tensor X ∈ RL×M×Ñ×S , where L and M denote
respectively time samples and the number of channels, Ñ
corresponds to the number of IED segments in each group
which needs to be equal, and S is the number of morphological
groups.

CPD is employed to decompose tensor X into its factor
matrices:

A,B,C,D
min f ≡ 1

2

∥∥∥X − [[A,B,C,D]]
∥∥∥2, (1)

where A ∈ RL×R and B ∈ RM×R correspond respectively
to the temporal and spatial factors, and C ∈ RÑ×R and
D ∈ RS×R are respectively the segmental and morphological
factors. Note that R is the number of components.

As IEDs originate from temporal lope regions and a large
proportion of them are captured by the same electrode for the
same subject, the spatial components can provide the most dis-
criminative features. Moreover, morphological components are
informative due to capturing the IED waveform information.
Therefore, both IED and non-IED segments of the training and
test datasets are projected onto the spatial and morphological
factors as follow:

Yn = XnBDT (2)

where Xn ∈ RL×M (n = 1, . . . , N1 + N2) is an IED
or non-IED segment from the training or test datasets and
Yn ∈ RL×S(n = 1, . . . , N1 +N2) is the same segment after
projection. Now, features of Yn are extracted and used for
classification. Here, we extract time-frequency (TF) features
using the spectrogram method. The schematic of proposed
SMCA-Sc method is illustrated in Fig. 1.

III. EXPERIMENTS

A. Dataset

The scalp EEG and iEEG signals of 18 epileptic subjects
were simultaneously recorded at King’s College Hospital
London. Here, we analyzed 20-minute iEEG recordings, which
were recorded at a sampling rate of 200 Hz by using 12
intracranial multicontact foramen ovale electrodes consisting
of a couple of 6 electrode bundles. A bandpass filter with
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Fig. 1. The schematic of proposed SMCA-Sc model. X includes the IED
segments which are concatenated in four-way tensors according to their scores
given by an expert based on the IED morphologies. CPD is applied to X
to decompose it to temporal, spatial, segmental, and morphological factors.
Xn(n = 1, . . . , N1 +N2) is an IED or non-IED segment from the training
or test data. Yn represents the same segment after projection onto the spatial
B and morphological D components.

cut-off frequencies of 0.3 and 70 Hz was employed during
recording [11].
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TABLE I
THE TOTAL NUMBER OF IED AND NON-IED SEGMENTS FOR EACH

SUBJECT. THE SAME NUMBER OF IED AND NON-IED SEGMENTS WERE
CHOSEN FOR EACH SUBJECT.

Subject No. of segments Subject No. of segments
S1 38 S10 622
S2 524 S11 692
S3 302 S12 344
S4 108 S13 26
S5 158 S14 20
S6 648 S15 692
S7 250 S16 22
S8 552 S17 178
S9 38 S18 338

B. IED Scoring and Preprocessing

An expert epileptologist identified the IEDs and gave a
score between 1 to 5 for each IED based on their morphology
and spatial distribution of the observed waveforms. The IEDs
scored the same look approximately similar in morphology.

The iEEG recordings are filtered using a Butterworth filter
of order six and cut-off frequencies of 4 and 70 Hz. The
highpass frequency of 4 Hz has been selected to eliminate eye
blink artifacts. In addition, a 50 Hz notch filter was employed
to remove the power line interference.

The iEEG signals were segmented into IED and non-
IED segments before classification. The length of IEDs was
selected to be 480 ms (96 time samples) – 160 ms before
and 320 ms after the positions of peaks manually marked as
IED by an expert. Non-IEDs with the same length as IEDs
were selected from time segments where there was no sign
of IEDs. Note that, non-IED segments included non-epileptic
spikes and sharp waves, biological and non-biological artifacts,
and normal brain activities. The number of non-IEDs was
randomly selected to be the same as the number of IEDs to
have a balance classification problem. The number of segments
are illustrated in Table I.

C. IED Detection Based on SMCA-Sc

A three-way tensor is constructed for IEDs with the same
score. In other words, we construct five three-way tensors each
with a different score. The number of IEDs in each three-
way tensor is set to the lowest number of IEDs scored 1, 2,
3, 4, or 5. Then, all five three-way tensors are concatenated
into a single four-way tensor, X ∈ R96×12×Ñ×5, where 96 is
time samples, 12 is the number of channels, Ñ denotes the
number of IED segments, and 5 corresponds to the number
of scores. CPD is employed to decompose the tensor into
temporal, spatial, segmental, and morphological factors. In
CPD, the number of components, R, has to be less than or
equal to the lowest number of observations in tensor’s modes.
Thus, it cannot be bigger than 5 in our study, and it was
set to the maximum value of 5. As a result, the factor are
A ∈ R96×5, B ∈ R12×5, C ∈ RÑ×5, and D ∈ R5×5. After
projecting IED and non-IED segments (Xn) onto the spatial

and morphological components using 2, the projected IEDs
and non-IEDs (Yn) have the dimensions of 96× 5.

The TF features of the projected segments are exploited
using the spectrogram. A Hanning window of the length of
80 ms (16 samples) and overlapping of 50% slid over each
channel of the projected segments (five channels) to obtain
time-frequency features (totaly11 windows). The squared mag-
nitudes of short-time Fourier transform obtained using the
spectrogram are utilized as classification features. The number
of discrete Fourier transform points has been set to 16 (the
same as the number of time samples in a window) resulting
in 9 frequency features. Finally, 11×9×5 features (495) were
obtained from each IED or non-IED segment, where 11 is the
number of time slabs, 9 is the number of frequency slabs,
and 5 is the number of morphological groups (the number of
channels of the projected segments).

D. Compared Methods

To show the effect of incorporating the IED morpholo-
gies in an IED detection system, the IEDs were randomly
concatenated into a single four-way tensor with the same
dimension as it is constructed for SMCA-Sc. Decomposition,
projection, feature extraction, and feature selection methods
were performed in the same manner as it was performed
in the proposed method. This model is called spatial and
morphological component analysis based on non-scored IEDs
(SMCA-nS).

We also compared our proposed SMCA-Sc method with a
method namely spatial component analysis (SCA) in which
all IEDs are concatenated into a three-way tensor [9]. We
already proposed SCA to detect IEDs from scalp IEDs. In
SCA, a three-way tensor of time, channel, and IED segment
is constructed. CPD is employed to decompose the tensor into
temporal, spatial, and segmental factors. For a fair comparison,
five components (R = 5) giving the best performance are
extracted like SMCA-Sc or SMCA-nS. Finally, both IEDs
and non-IEDs are projected onto the spatial components.
After projection, the same feature extraction and selection are
applied to extract the significant features.

In [12], the authors proposed a binary convolutional neural
network (CNN Bin) and a multiclass CNN (CNN Multi) to
detect IEDs in which the same data was utilized. In CNN Bin,
the IEDs and non-IEDs were detected in a binary classification
approach. In CNN Multi, the authors detected IEDs based
on their scores. In addition, the results of wavelet features
(WF) and TF features (TFF) extracted from the raw iEEG
in the same manner done here were reported in [12]. Here,
we compare our proposed SMCA-Sc method with CNN Bin,
CNN Muti, WF, and TFF.

We also made a comparison with a TD-based method in
which the authors used the same dataset [6]. In the TD method,
TF features were extracted using the spectrogram method.
Then, a three-tensor – with the dimension of channel, time,
and frequency – was constructed and decomposed using TD.
Finally, IED and non-IED segments were projected onto the
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spatial components. Here, we compare our developed SMCA-
Sc method with TD developed in [6].

E. Feature Selection and Classification

Fisher score method was employed to select the most
significant features, which is defined as:

fi =

∑c=C
c=1 nc(µic − µi)

2∑c=C
c=1 ncσ

2
ic

, (3)

where µic and σic denote respectively the mean and standard
deviation of the i-th feature in the c-th class, nc is the number
of instances in the c-th class, and µi is the mean of the i-th
feature.

Decision tree ensembles (DTE) with bagging technique,
naı̈ve Bayes (NB), k-nearest neighbors (KNN) with k = 3,
and KNN with k = 5 were employed and compared for
classification.

F. Evaluation and Cross Validation

Leave-one-subject-out cross validation was employed to
validate the models. The IEDs and non-IEDs of a subject used
as the test data, others were utilized for training the classifiers.

For evaluation of the methods, accuracy (ACC), sensitivity
(SEN), specificity (SPEC), F1 score (F1-S), and area under
the receiver operating characteristics (AUROC) were obtained
as follows:

ACC =
TP + TN

TP + FP + TN + FN
× 100%, (4)

SEN =
TP

TP + FN
× 100%, (5)

SPEC =
TN

TN + FP
× 100%, (6)

F1-S =
2TP

2TP + FP + FN
, (7)

where TP denotes the number of IED samples recognized
correctly in the IED class, TN is the number of non-IED
samples classified accurately as non-IED samples, FP repre-
sents the number of non-IED samples categorized wrongly as
IED samples, and FN indicates the number of IED samples
detected incorrectly in the non-IED class. Accuracy shows the
percentage of detection of IED and non-IED samples, and sen-
sitivity and specificity respectively indicate the performance of
classifiers in correctly detecting the IED and non-IED samples.

IV. RESULTS

First, we compare our proposed SMCA-Sc method with
SMCA-nS and SCA, all of which are based on spatial compo-
nents as well as CPD. The obtained results are shown in Table
II. KNN models are based on the first 10 features and NB is
based on the first 30 features obtained using the Fisher score.
In DTE, the first 80 features were utilized in SMCA-nS and
SMCA-Sc methods, and the first 100 features were employed
for the SCA method. These numbers of features gave the best
performances in their models.

In both KNNs, SMCA-Sc outperformed the compared meth-
ods. In KNN with k = 3, SMCA-Sc provided 86.7% accuracy

TABLE II
THE PERFORMANCE OF CLASSIFIERS WITH RESULTS AVERAGED OVER ALL

SUBJECTS. THE CLASSIFIERS WERE TRAINED AND TESTED USING
LEAVE-ONE-SUBJECT-OUT CROSS VALIDATION. ACC, SEN, AND SPEC

ARE PRESENTED IN PERCENT %.

Classifiers Method ACC SEN SPEC F1-S AUC

KNN(k=3)

SCA 84.8 77.4 92.2 0.81 0.91
SMCA-nS 84.6 74.5 94.8 0.81 0.91
SMCA-Sc 86.7 78 95.4 0.84 0.93

KNN(k=5)

SCA 85.4 77.8 93 0.82 0.93
SMCA-nS 82.8 72.5 93.1 0.78 0.92
SMCA-Sc 87 77.7 96.2 0.84 0.94

NB

SCA 84.4 71 97.8 0.79 0.88
SMCA-nS 82.8 68 97.6 0.75 0.86
SMCA-Sc 86.4 74.8 98 0.83 0.9

DTE

SCA 92.6 89.7 95.6 0.92 0.99
SMCA-nS 91.9 89.2 94.6 0.91 0.99
SMCA-Sc 92.9 89.7 96.1 0.92 0.99

TABLE III
COMPARING THE PROPOSED SMCA-SC MODEL WITH WF, TFF, TD,
CNN BIN, AND CNN MULTI PROPOSED IN [6] AND [12]. ACC, SEN,

AND SPEC ARE PRESENTED IN PERCENT %.

Method ACC SEN SPEC F1-S AUC
WF 72.3 70 72 0.73 0.73
TFF 85.6 78 72 0.76 0.85
TD 86 - - - -

CNN Bin 85.9 90 87 0.88 0.88
CNN Multi 89 94 81 0.88 0.9
SMCA-Sc 92.9 89 96 0.92 0.99

which was approximately 2% higher than SMCA-nS and SCA
accuracy values. In KNN with k = 5, SMCA-Sc presented the
best accuracy of 87% which was respectively 1.6% and 4.2%
higher than those of SCA and SMCA-nS. In terms of SEN and
SPEC, SMCA-Sc outperformed SMCA-nS and SCA as well in
both KNNs. SMCA-Sc presented 0.84 F1-S, which was 0.02
to 0.06 more than the compared methods’ F1-S values.

Using NB classifier, SMCA-Sc method detected the IEDs
and non-IEDs with 86.4% accuracy, while SCA and SMCA-nS
respectively presented 84.4% and 82.8% accuracy values. In
terms of SEN, SMCA-Sc significantly outperformed the com-
pared method, though all models presented the comparative
SPEC values. SMCA-Sc provided the best F1-S and AUC as
well.

In DTE, SMCA-Sc provided the best ACC of 92.9% and
SPEC of 96.1% followed by SCA with a small difference.
In terms of SEN and F1-S, SMCA-Sc and SCA achieved the
comparative values and all three methods obtained 0.99 AUC.

Overall, all methods in all four types of classifiers resulted in
higher SPEC than SEN. SPEC values were higher than 90%
in all models, while SEN values were less than 80% in all
methods when KNNs and NB classifications were employed.
In DTE, there was an appropriate trade-off between SEN and
SPEC in all methods.

Furthermore, we made a comparison with TD developed in
[6] and with WF, TFF, CNN Bin, and CNN Multi proposed in
[12]. The results are illustrated in Table III. The performance
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of SMCA-Sc using the DTE classifier leads to the best
performance.

Our proposed SMCA-Sc model significantly outperformed
the compared methods by providing 92.9% accuracy. Among
the compared methods, CNN Multi presented the highest
accuracy of 89% which was approximately 4% less than that
of SMCA-Sc. Although CNN Multi detected IEDs with the
highest SEN of 94%, SMCA-Sc leads to the best values of
SPEC, 96%, F1-S, 0.92, and AUC, 0.99.

V. CONCLUSION

Detecting IEDs plays a pivotal role in the diagnosis of
epilepsy. Here, we proposed a new method based on spa-
tial and morphological components for IED detection. The
proposed SMCA-Sc method was compared with 1) SMCA-
nS, 2) SCA, 3) WF, 4)TFF, 5) TD, 6) CNN Bin, and 7)
CNN Multi. SMCA-Sc outperformed all compared methods
and detected IEDs with 92.9% accuracy. The only difference
between SMCA-Sc and SMCA-nS is that the IEDs are ran-
domly concatenated into four-way tensor data, not based on
their scores, in SMCA-nS. In addition, the difference between
SMCA-Sc and SCA is that all IEDs are concatenated into
a three-way segment without considering their scores. The
findings show that taking the IED morphologies into account
in an IED detection system can boost the model performance.
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