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Abstract—Psychogenic non-epileptic seizures (PNES) are
mostly associated with psychogenic factors, where the symptoms
are often confused with epilepsy. Since electroencephalography
(EEG) signals maintain their normal state in PNES cases, it
is not possible to diagnose using the EEG recordings alone.
Therefore, long-term video EEG records and detailed patient
history are needed for reliable diagnosis and correct treatment.
However, the video EEG recording method is more expensive
than the classical EEG. Therefore, it has great importance to
distinguish PNES signals from normal epileptic seizure (ES)
signals using only the EEG recordings. In the proposed study,
using the Synchrosqueezed Transform (SST) that gives high-
resolution time-frequency representations (TFR), inter-PNES,
PNES, and Epileptic seizure EEG classification is introduced.
17 joint TF features are calculated from the TFRs, and various
classifiers are used for classification processes. Classification
problems with three classes (inter-PNES, PNES, and ES) and
two classes (inter-PNES and PNES) are considered. Experimental
results indicated that both three-class and two-class classification
approaches achieved encouraging validation performances (three-
class problem: 95.8% ACC, 86.9% SEN, 91.4% PRE, and 8.6%
FDR; two-class problem: 96.4% ACC, 96.8% SEN, 97.3% PRE,
and FDR lower than 10%).

Index Terms—PNES, EEG, SST, Time-Frequency Analysis

I. INTRODUCTION

PNES are situations that have a psychogenic origin, and
resembles ES. However, electrical discharges characterized by
ES are not observed in EEG patterns of the case of PNES
[1], [2]. 1 out of every 4 people examined in epilepsy clinics
is diagnosed with PNES, and women are 10 times more
probable than men to suffer from psychogenic disorders such
as PNES [3]. Although the cause of PNES is not known
exactly, it is thought that many psycho-social factors and
psychological mechanisms such as trauma, somatization dis-
order, personality factors or disorders, psychiatric comorbidity
(depression, panic disorder, chronic anxiety), age factors,
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behavior change, gender, and psychological mechanisms may
be related to PNES [4]. Many features such as stable ictal
heart rate, closed eyes, pelvic thrusting, and longer-term events
are more associated with PNES than ES, distinguishing ES
and PNES is a challenging problem [5]. While interictal
epileptiform discharges (IEDs) occur in the case of epileptic
seizures, electrical activities of the brain maintain their normal
state in the PNES cases. Therefore, PNES diagnosis is made
base on video-EEG monitoring and patient history. However,
achieving the correct diagnosis by visual examination of long-
term video-EEG records is directly related to the experience
of the expert neurologist, and it is a very time-consuming
and tiring process. Hence, effective computer-aided diagnosis
(CAD) systems are needed to accurately and quickly detect
PNES cases [1], [6].

In the study [1], a method is presented for the classifica-
tion of epilepsy and PNES using short-term EEG data, the
functional network, and EEG sub-band features. Results of the
study demonstrate that the beta-band is the most effective EEG
sub-band to distinguish ES and PNES segments. In another
study, common spatial pattern-based epilepsy and PNES sepa-
ration is proposed. In the results of the study, accuracy of 92%,
the sensitivity of 100%, the specificity of 80% values were
achieved [7]. Time-frequency (TF) mapping-based epilepsy
and PNES discrimination approach was performed in another
study and 93% PNES detection accuracy was reported [5].

In the literature, many studies are presented to distinguish
ES and PNES segments. However, since the electrical activity
of the brain maintains its normal situation [1], it is difficult to
distinguish the inter-PNES and PNES segments using the EEG
recordings. In this paper, the high-resolution SST method-
based feature extraction and classification model is proposed
to distinguish ES, inter-PNES, and PNES segments. 17 joint-
TF features are computed by utilizing the magnitude square of
SST to capture the differences in these three classes. Various
classifiers are implemented for classifying the feature set to
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distinguish the PNES, inter-PNES and ES segments.

II. MATERIALS AND METHODS

In this study, a novel time-frequency representation-based
approach is presented to distinguish inter-PNES, PNES, and
ES EEG segments. The proposed method involves obtaining
joint TF representation of “inter-PNES“, “PNES“, and “ES“
EEG segments labeled by the experts, and extracting various
features from the resulting TF distributions. We propose uti-
lizing a recently developed TF analysis method “SST” that
results a close to ideal TF distribution. Joint-TF features are
calculated using the energy densities obtained by SST. Finally,
machine learning algorithms such as Decision tree (DT),
Support Vector Machines (SVM), Random Forest (RF), and
RUSBoost (RUSB) classifiers are used for the classification
of generated feature sets.

A. Clinical EEG data

The dataset used in the proposed study was obtained
from the Izmir Katip Celebi University School of Medicine
Department of Neurology. The 18-channel EEG data were
obtained from 16 epilepsy and 6 PNES patients, recorded
using surface electrodes with 100 Hz sampling frequency.
EEG signals are recorded from electrode positions of Fp1-F7,
F7-T1, T1-T3, T3-T5, T5-O1, Fp1-F3, F3-C3, C3-P3, P3-O1,
Fp2-F8, F8-T2, T2-T4, T4-T6, T6-O2, Fp2-F4 F4-C4, C4-P4,
P4-O2 using International 10-20 electrode placement system.
However, based on expert clinician suggestions, EEG signals
recorded from the temporal and frontal lobes (Fp1-F7, F7-T1,
T1-T3, T3-T5, Fp1-F3, Fp2-F8, F8-T2, T2-T4, T4-T6, Fp2-F4)
are used in the proposed study.

For the 6 PNES patients, PNES segments and inter-PNES
segments are obtained based on the opinion of expert neurol-
ogist. Similarly, the ES segments are labeled and segmented
for 16 epilepsy patients and used in the proposed study. Then,
all inter-PNES, PNES, ES segments are divided into 1 s long
segments.

B. Synchrosqueezing Transform

Synchrosqueezing Transform, a member of the family of
TF reassignment methods (RM), is developed to achieve a
highly localized TF representation (TFR) for non-stationary
signals. SST algorithms based on both CWT and STFT have
been developed in the literature, but the Fourier (STFT)-based
SST approach is used in the proposed study [8]–[10]. Steps
of STFT-based SST algorithm are given in the following;

1. The SST algorithm is initialized by computing the STFT
“X(ω, t)“ of the given signal “x(t)“.

X(ω, t) =

∫ ∞
−∞

x(τ)w(τ − t)e−jωτdτ (1)

Here, w(t) denotes the window function.
2. By calculating the derivative of “X(ω, t)“ with respect

to time, instantaneous frequency (IF) information “ω0(ω, t)“
that is generally neglected in the STFT is achieved.

ω0(ω, t) = Re

(
1

2iπ

∂tX(ω, t)

X(ω, t)

)
(2)

3. Finally, the SST “T (η, t)” is obtained by utilizing
IF “ω0(ω, t)” and synchrosqueezing operator “

∫∞
−∞ δ(η −

ω0(ω, t))dω” [9], [10].

T (η, t) =
1

g(0)

∫
R

X(ω, t)δ(η − ω0(ω, t))dω (3)

Examples of SST magnitude “|T (η, t)|” are demonstrated
for inter-PNES, PNES, and ES EEG segments in Fig. 1.

C. Feature Extraction

The conventional time-domain or frequency-domain fea-
tures or their combinations have limited performance in the
analysis of non-stationary signals. Therefore, joint TF features,
which are adapted versions of time- or only frequency-domain
features, are computed using the resulting TFRs [11]–[13].
In the proposed study, 17 joint TF features i.e., three TF-
flux, TF-flatness, TF energy concentration measure, two TF-
entropy, six statistical features, five TF sub-bands energies
are calculated from the TF representations of EEG signals to
achieve high three-class classification performance. Joint-TF
densities (TFD) “S(n, k)′′ obtained by using magnitude square
of SSTs obtained from EEG segments are used to calculate the
joint TF features.

1) Time-frequency flux: This feature is calculated to mea-
sure the change of the energy of the signal in the TF
domain.

TFflux =

N−x∑
n=1

M−y∑
k=1

|S(n+ x, k + y)− S(n, k)| (4)

Here, x and y indicate the direction of signal energy
in the TF domain. In the proposed study, the three
directions are take into account to calculate TF flux;
for the the t axis (x = 0, y = 1) , for the f axis
(x = 1, y = 0), and for the diagonal axis (x = 1, y = 1).

2) Time-frequency flatness: This feature is formulated by
dividing the geometric mean of the TF density by its
arithmetic mean.

Fflat = NM

∏N
n=1

∏M
k=1 |S(n, k)|

1
NM∑N

n=1

∑M
k=1 S(n, k)

(5)

3) Time-frequency energy concentration measure: This
feature is computed to evaluate the concentration of
signal energy in the TF domain.

FEn = (

N∑
n=1

M∑
k=1

|S(n, k)| 12 )2 (6)

4) Time-frequency entropy: Joint TF normalized Renyi
entropy is calculated using TFD of EEG segments.
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(a) (b) (c)

(d) (e) (f)

Fig. 1: 1-sec long EEG segments, (a) inter-PNES, (b) PNES, and (c) ES; magnitude SST of (d) inter-PNES, (e) PNES, and
(f) ES EEG segments.

FRen = −1

2
log2(

N∑
n=1

M∑
k=1

(
S(n, k)∑N

n=1

∑M
k=1 S(n, k)

)3)

(7)
5) Statistical features: Six statistical features named Mean

“Fmn“, Standard deviation “FSd“, Skewness Fskew“,
Kurtosis “Fkur“, Coefficient of variation “Fcovar“, Me-
dian absolute deviation “Fmd“ are calculated using TFD.

Fmn = µ =
1

MN

N∑
n=1

M∑
k=1

S(n, k)

FSd = σ =

√√√√ 1

MN

N∑
n=1

M∑
k=1

(S(n, k)− µ)2

Fskew =
1

MNσ3

N∑
n=1

M∑
k=1

(S(n, k)− µ)3

Fkur =
1

MNσ4

N∑
n=1

M∑
k=1

(S(n, k)− µ)4

Fcovar =
σ

µ

Fmd =
1

MN

N∑
n=1

M∑
k=1

|S(n, k)− µ| (8)

6) TF sub-band energies: 5 joint TF sub-band energy
features for δ : [0−4]Hz., θ : [4−8]Hz., α : [8−13]Hz.,
β : [13 − 22]Hz., and γ : [22 − 50]Hz. bands

are calculated using TFDs obtained from SSTs. For
example, while TFδ denotes the joint TF energy values
corresponding to δ sub-band frequencies of the TFD,
TFθ denotes the joint TF energy values corresponding
to θ sub-band frequencies of the TFD.

TFδ =

N∑
n=1

Mδ∑
k=1

S(n, k);

TFθ =

N∑
n=1

Mθ∑
k=Mδ+1

S(n, k)

TFα =

N∑
n=1

Mα∑
k=Mθ+1

S(n, k);

TFβ =

N∑
n=1

Mβ∑
k=Mα+1

S(n, k)

TFγ =

N∑
n=1

M∑
k=Mβ+1

S(n, k) (9)

D. Classification

In the proposed study, four classifiers; DT [14], SVM [10],
RF [15], and RUSB [16] are used to classify the inter-PNES,
PNES and ES segments. On account of achieving a consistent
classification accuracy, 10− fold cross-validation is utilized
in our approach. By using various statistical metrics namely,
Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), Preci-
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sion (PRE), and False Discovery Rate (FDR), the performance
evaluation of the classifiers are conducted [14], [17], [18].

ACC =
TP + TN

TP + FN + FP + TN

REC =
TP

TP + FN

SPE =
TN

FP + TN

PRE =
TP

TP + FP

FDR =
FP

FP + TP
(10)

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this paper, the SST-based TFR approach is introduced to
achieve satisfactory information for discrimination of inter-
PNES, PNES, and ES EEG segments. EEG data recorded
from 10 different channels of 16 epilepsy patients whose
epilepsy attacks were mostly left hemisphere focused and 6
PNES patients, are examined. 1-sec long EEG segments are
obtained from EEG signals of both PNES and epilepsy patients
separately, and then for each EEG segment, time-frequency
representations are obtained utilizing the SST approach. Using
the obtained TF representations, 17 different joint TF features
are computed, and 1× 17 joint TF feature vector is obtained
for each EEG segment.

Two cases are investigated in our study: (i) Three-class
problem: PNES segments are identified by using the feature
sets obtained from EEG segments belonging to three classes;
inter-PNES, PNES, and ES. (ii) Two-class problem: Detecting
PNES segments using two different designs; patient-dependent
design (PDD), and the patient-independent design (PID), using
joint TF features obtained only from the inter-PNES and PNES
segments [19], [20].

1) Classification Results and Discussion of Three-class
Problem: Various classifiers and different statistical perfor-
mance measurement metrics are utilized to classify inter-
PNES, PNES and ES EEG segments. The performance eval-
uation results of the proposed SST based inter-PNES, PNES
and ES distinguish approach are indicated in Fig. 2. While
the highest ACC, PRE, and lowest FDR are achieved using the
RF classifier (ACC:95.8%, PRE:91.4%, FDR: 8.6), the highest
SEN value (90.3%) is obtained using the RUSB classifier for
PNES detection. Additionally, for all classifiers except SVM,
higher ACC ≥ 93% , SEN ≥ 82%, and PRE ≥ 86% and lower
FDR ≤ 14% values are obtained.

2) Classification Results and Discussion of Two-class
problem: Because of interictal epileptiform discharges (IEDs)
occurring in the ES, the discriminative information can be
achieved between PNES and ES segments. However, the
electrical activity of the brain maintains the normal situation
in PNES cases. So inter-PNES and PNES distinguishing is a
more challenging process for the expert neurologist. In this
stage of the proposed approach, PDD and PID based PNES
detection approaches are performed.

Fig. 2: Classifier based PNES detection performances.

TABLE I: Performance evaluation results of PDD based
PNES detection approach (The numbers in bold represent the
highest performance).

Patient ID
Classifiers Metrics Pt-1 Pt-2 Pt-3 Pt-4 Pt-5 Pt-6 Avg.

ACC 90.8 94.2 96.1 96.6 97.6 93.3 94.77
DT SEN 96 94.7 93.8 95.5 96.2 94.5 95.12

SPE 70.1 93.8 98.4 98.1 99.1 91.6 91.85
PRE 92.7 93.8 98.3 98.6 99.1 94.3 96.13
ACC 79.8 93.3 94.2 93.5 96.5 94.3 91.93

SVM SEN 100 91.4 89.4 92.5 93.7 93.2 93.37
SPE 0 95.2 99.1 94.9 99.5 96 80.78
PRE 79.8 95 99 96.2 99.5 97.2 94.45
ACC 92.3 95.2 97.5 97.3 98.3 98 96.43

RF SEN 96.1 95.3 96.8 96,6 97.8 98.2 96.8
SPE 77.1 95.1 98.2 98.2 98.9 97.7 94.2
PRE 94.3 95.1 98.2 98.7 99 98.5 97.3
ACC 91.2 94.6 96.8 96.6 98.1 97.1 95.73

RUSB SEN 92.5 95.5 96.3 96.7 98.6 97.1 96.12
SPE 86.5 93.7 97.3 96.5 97.5 97.2 94.78
PRE 96.4 93.8 97.3 97.5 98.7 98.1 96.97

Performance evaluation results of PDD based PNES de-
tection approach are demonstrated in Table I. The highest
classification accuracies are achieved with 92.3%, 95.2%,
97.5%, 97.3%, 98.3%, and 98 % using the RF classifier for
six patients, respectively. While the RUSB classifier yields the
maximum SEN values for Pt-1, Pt-4, and Pt-5, the highest
SEN values for Pt-2 and Pt-6 are achieved using the RF
classifier. However, for only Pt-1, the maximum SEN value
is obtained using the SVM classifier. Additionally, while the
highest average classification performance is achieved with
96.43% ACC, 96.8% SEN, 97.3% PRE values using RF
classifier, the maximum average SPE value is obtained using
RUSB classifier.

In addition, the performance of the PID approach is tested
by creating a model with N patients minus patient-i, and
the sensitivity and false discovery rate are obtained using
that model when classifying an unknown patient (patient-i).
Then the performance of PID and PDD-based approaches are
compared for two class classification problem (given in Fig.3).
To achieved average SEN and FDR values, DT, SVM, RF, and
RUSB classifiers are utilized. In general, the SEN of the PDD
approach is ≥ 90%, but the average SEN of the PID approach
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Fig. 3: Comparison of average sensitivity values and False
discovery rates of PNES detection obtained by PDD and PID
approaches.

for detecting unknown data is lower for some patients. For
example, the average SEN values of Pt-1 and Pt-6 for the PID
approach are almost 10% lower than that of the PDD approach.
Additionally, both PDD and PID approaches yield lower FDR
values ≤ 10%.

IV. CONCLUSION

In this paper, classification of inter-PNES, PNES, and ES
EEG segments of 16 epilepsy and 6 PNES patients are
investigated. By using Synchrosqueezed Transform that gives
highly localized TFDs, joint TFRs of each EEG segment of
PNES and epilepsy patients are obtained to achieve distinctive
information between different patient groups. Joint TF features
that are adapted versions of time- or frequency-domain fea-
tures are calculated from TFRs and the classification processes
are performed using various classifiers. Both three-class classi-
fication problem including classification of inter-PNES, PNES,
and ES EEG segments, and two-class problem considering
inter-PNES, PNES EEG segments are conducted. For both
three-class and two-class classification problems, outstanding
classification performances are achieved. In the later stages of
the proposed study, it is aimed to include different features,
and perform the classification using different classifiers.
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