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Abstract—Electroencephalography (EEG) is an important clin-
ical tool to capture sleep-wake cycling. It can also be used for
grading injury, known as hypoxic-ischaemic encephalophathy
(HIE), caused by lack of oxygen or blood to the brain during
birth. Tracé alternant (TA) is a distinctive component of normal
quiet sleep which consists of alternating periods of high-voltage
activity (bursts) separated by lower-voltage activity (inter-bursts).
This study presents an automated method to grade the severity
of injury in HIE, using an automated method to first detect TA
activity. The TA detector uses the output of an existing method
to detect inter-bursts. Features are extracted from a processed
output and then combined in a support vector machine (SVM).
Next, we develop an HIE grading system using the TA detector
by combining different features from the temporal organisation
of the detected TA mask, again using an SVM. Training and
testing for both models use a leave-one-baby-out cross-validation
procedure, with model hyper-parameters selected from nested
cross validations. The TA detector, tested on EEG from 71 healthy
term neonates, has an accuracy of 79.1% (Cohen’s κ=0.55). The
HIE grading system, tested on EEG from 54 term neonates in
intensive care, has an accuracy of 81.5% (κ=0.74). These results
validate how detecting the presence or absence of TA can be used
to quantify the grade of HIE injury in neonatal EEG and open
up the possibility of a clinically-meaningful grading system.

I. INTRODUCTION

The electroencephalogram (EEG) provides an effective non-
invasive tool to monitor the brain activity of critically ill
neonates in the neonatal intensive care unit (NICU) [1].
Lack of blood and oxygen to the brain around the time of
birth can cause permanent brain injury or death. This injury,
known as hypoxic-ischaemic encephalopathy (HIE), occurs in
approximately 3 to 5 per 1,000 births in high-income countries.
Clinical review of the EEG can correctly identify the degree of
HIE severity [2]. Around-the-clock interpretation of the EEG
is not practical, however, because of the limited resources and
specialised expertise required for neonatal EEG. Automated
analysis of the EEG could provide continuous monitoring of
neonatal brain function and may assist in the critical care of
these vulnerable infants.

Neonates spend most of their time sleeping. EEG as-
sessment of the sleep–wake cycle can provide insight into
neurological development and brain maturation [1], [3]. An
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important component of the EEG grading scheme for HIE
injury is to assess for the presence of sleep–wake cycling
[2]. In healthy term neonates, 4 major sleep–wake states are
evident on the EEG: active sleep, quiet sleep, indeterminate
sleep, and wakefulness [4]. Quiet sleep (QS) can be sub-
categorized into 2 states as high-voltage slow-wave (<4 Hz)
activity and tracé alternant (TA) activity [5]. TA activity
displays a distinctive pattern of high voltage waveforms known
as bursts (typically 50 to 150 µV peak-to-peak), followed by
lower-voltage waveforms known as inter-bursts (typically 25 to
50 µV peak-to-peak) [5]. Duration of these waveforms range
from approximately 2 to 10 seconds.

Although limited in number, there has been recent interest
in developing algorithms to detect different sleep states in
neonates [6]–[8]. In addition, a limited number of EEG algo-
rithms to grade HIE severity have been proposed [9]–[13]. A
subset of these algorithms have focused on detecting clinically
relevant attributes of the EEG grade of HIE [12], [14]. Both
of these 2 methods extract characteristics of the inter-burst
interval in discontinuous activity (which differ to inter-bursts
in TA activity) to grade HIE severity [12], [14].

We aim to continue this approach of clinically-meaningful
algorithms by developing a TA detector and using this detector
to help grade HIE severity. Building on our existing work [8],
we develop a machine learning model that detects the presence
or absence of TA activity within a neonatal EEG recording.
This model is developed using sleep-staging EEG data from 71
healthy term infants. Next, we extract features of the temporal
map of the TA detector, such as the percentage of TA activity,
and develop another machine learning model to classify EEG-
HIE grades. For this model we use an EEG HIE grading data
set of 54 term infants recorded in the NICU. We envisage this
model to be 1 part of a larger HIE grading system, consisting
of clinically relevant modules with meaningful interpretation.

II. METHODS

We first develop an automated TA detector by identifying
bursts and inter-bursts within TA activity from the background
EEG. The overall structure of the TA detector system is shown
in Fig. 1. Second, we develop a HIE grading system which
extracts features from the TA decision function and combines
these in a support-vector machine to classify 4 grades of HIE.
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Fig. 1: Overview of proposed system for detecting tracé alternant (TA) activity. SVM: support vector machine; IBI: inter-burst
interval.

The grading systems makes a decision from approximately 1
hour of multi-channel EEG.

A. EEG Data and Pre-processing

Two datasets were used in this study:
1) EEG sleep-staging dataset: EEG was recorded from

term infants using a NicoletOne EEG system in Cork Uni-
versity Maternity Hospital, Cork, Ireland with informed and
written parental consent [15]. The study was approved by the
Clinical Ethics Committee of the Cork Teaching Hospitals.
EEG recordings started as soon as possible after birth and
continued for up to 1–2 hours to include different sleep states.
Five scalp electrodes were used over the frontal and temporal
regions with a reference electrode placed between the frontal
(Fz) and midline (Cz) region. The EEG was analysed using a
4-channel bipolar montage, derived from these electrodes as
F3–T3, F4–T4, T4–Cz and Cz–T3. An EEG expert reviewed
and annotated instances of TA activity [15]. Within the TA
activity all bursts and inter-bursts were also annotated. The
dataset consists of a total of 91 EEG recordings, from which a
subset of 71 were selected based on the criteria of >5 minutes
of continuous TA activity. EEG data were sampled at 256
Hz during recording and electrode impedance was maintained
below 5 kΩ. Movement artefacts, defined as the absolute value
of EEG >1,500 µV, were removed. EEG was low-pass filtered
to 30 Hz using an finite-impulse response (FIR) filter of length
4,001 samples and then down-sampled to 64 Hz.

2) EEG HIE grading dataset: The EEG was recorded from
a NicoletOne EEG system from 54 term infants in the NICU
of Cork University Maternity Hospital, Cork, Ireland [9]. This
study was approved by the Clinical Ethics Committee of the
Cork Teaching Hospital with written and informed parental
consent obtained before EEG recording. To monitor the evo-
lution of the developing encephalopathy, EEG recordings were
initiated within 6 hours of birth and continued for up to 72
hours. Nine active electrodes over the frontal, central, tem-
poral, and occipital areas were used for EEG recording. Our
analysis used an 8-channel bipolar montage derived from these
electrodes as F4–C4, F3–C3, C4–O2, C3–O1, T4–C4, C3–T3,
C4–Cz and Cz–C3. To avoid major artefacts, approximately 1-
hour EEG epochs were pruned from the continuous EEG. Two
EEG experts independently reviewed each epoch and graded

according to the system defined by Murray et al. [2]. In cases
of disagreement, the experts jointly reviewed the EEG to reach
consensus for the final grade. This same dataset has been used
by Stevenson et al. [9], Ahmed et al. [10] and Raurale et al.
[11]–[13].

B. Inter-burst Detection

The proposed system architecture uses an existing inter-
burst detection method [8] that was developed on the same
EEG data. To classify bursts and inter-bursts present within
TA activity, the detector uses multiple features that capture
differences in amplitude and spectral shape: envelope, fractal
dimension, relative spectral power, measure of spectral fit, and
instantaneous frequency across four frequency bands 0.5–4
Hz, 4–7 Hz, 7–14 Hz, and 14–30 Hz; and a frequency-
weighted energy measure, the envelope–derivative operator,
within the 0.5–10 Hz range [16]. These features, taken from a
preterm inter-burst detection method [16], were then combined
using a linear-kernel support vector machine (SVM). A cross
validation procedure, using a leave-one-baby-out, was used in
training and testing. Fig. 2 shows an example of 1 channel of
EEG with burst and inter-burst annotations and the detector’s
estimate of inter-bursts.

1 sec

100 µV
T4-Cz

Burst annotation

Inter-burst annotation

Detected Inter-burst

Fig. 2: Annotations of bursts and inter-bursts within tracé
alternant activity and detected inter-bursts for 1 channel EEG.

C. TA Detection

We use the output of the inter-burst detector, the confidence
score, to build a TA detector which differentiates TA activity
from all other EEG states. Although the inter-burst detector
was trained and tested only in TA activity, the TA detector
is trained and tested on the whole duration of the EEG
recording, which includes periods of wakefulness, active sleep,
and intermediate sleep.
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For the first stage of this process, we convert the confidence
score of the inter-burst detector, which is an unbounded contin-
uous variable, into a smooth, low-pass envelope function. First,
we apply a 3-second low-pass moving-median filter to the
confidence score to suppress the higher-frequency noise and
outliers. The filtered score is then standardised using a sigmoid
function to produce a score bounded in the 0 to 1 range. Next,
an envelope is estimated on the filtered-sigmoid confidence
score using local maxima. The minimum separation parameter
for the local maxima is optimised during training over the
range (2.5, 50) seconds with a step size of 2.5-seconds. Spline
interpolation is used to link the peaks, producing a smooth
envelope function. A summarised envelope score is produced
by averaging across channels. A threshold is used on the
summarised envelope function to classify into TA and non-TA
activity. This procedure is similar to what was presented in [8];
this time, we have included the sigmoid function to help scale
the envelope function. Fig. 3 shows the visual interpretation
of the filtered confidence score output, the smoothed envelope
function and the evaluated TA mask.

Filtered CS

Detected

TA mask

TA annotation

Envelope

8 mins

Fig. 3: Tracé alternant (TA) detection (TA mask), estimated
from the smoothed envelope function, which is, in turn,
estimated from the the filtered confidence score (CS) of the
inter-burst detector. TA annotations (top) from the EEG expert.

In the second stage, the envelope function is used to detect
TA activity. The envelope is segmented into 5 minute epochs
with 4.5 minute overlap and only those epochs with either
full TA activity or full non-TA activity are considered. Three
features are extracted from the 5-minute envelope epoch: root
mean square, median, and maximum value of the envelope.
These features are then combined using a machine learning
model. Here, we test 4 different models: a decision tree, a
naive Bayes classifier, a linear SVM, and a nonlinear SVM
with a radial basis function kernel classifiers. Training and
testing is performed using a leave-one-subject-out (LOSO)
cross validation. Hyperparameters of the radial-basis function
SVM (RBF-SVM) were selected from a nested 5-fold cross
validation. Values of γ and C were selected from the 2D
grid of [10×5]. The minimum separation parameter for the
envelope function is selected from a grid search within the
same (outer) cross validation in a sequential manner rather
than a nested cross validation.

For comparison with the machine learning models, a thresh-
old is applied directly to the envelope function to detect TA
activity.

D. HIE Detection

EEG from the HIE grading dataset was downsampled from
256 Hz to 64 Hz, after application of an anti-aliasing low-
pass filter with a cut-off of 30Hz. Each EEG channel was
then analysed by the TA detector using a 5-minute segment
with a step size of 1 second. Two features are extracted from
the SVM output of the TA detector, the continuous-valued
confidence score (CS). Additionally, 3 features of the binary
TA mask are also extracted. These 5 features are as follows:

1. CS Median (CSmed): central approximate CS value across
the 1-hour epoch.

2. Coefficient of CS variations (CSCoV): extent of CS variabil-
ity with respect to the mean CS. Calculated as,

CSCoV = log | CSstd/CSmean| (1)

where CSstd is the standard deviation and CSmean is the mean
of the CS outputs from epoch.

3. TA percentage (TA%): overall occurrence of TA activity in
the 1-hour EEG epoch. Calculated as the total duration of TA
to the overall epoch length,

TA% =
100

L

L−1∑
n=0

t[n] (2)

where t[n] is the length-L binary mask.

4. Number of TA instances: counts the number of TA instances
over the 1-hour epoch.

5. Maximum duration of TA (TAmax): is measure by subtract-
ing the difference between the maximum and the minimum
TA length within an epoch as,

TAmax = max(t[n])−min(t[n]) (3)

These features are combined using a RBF-SVM. The SVM
classifier is used in one-versus-one configuration to recognise
each of the 4 HIE grades. The overall structure of the proposed
HIE grading system is shown in Fig. 4.
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Fig. 4: Overview of the proposed system for detecting HIE
grade. SVM: support vector machine; TA: tracé alternant.

For training and testing, a LOSO cross-validation method
is used. The hyper parameters for the RBF-SVM classifier
were selected from a 2D grid of [10×5] using a nested 5-fold
cross-validation.
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III. RESULTS

TA detection performance for each of individual envelope
features and 3 machine learning models, which combine these
features, is in Table I. Performance is assessed using the area
under the receiver operator characteristic curve (AUC) using
the LOSO cross-validation results.

TABLE I: Performance for individual Envelope features com-
bined with different classifiers for detecting TA and non-TA
activity in LOSO cross-validation.

Features Classifiers

RMS Max Median DT NB SVM

AUC 0.810 0.826 0.812 0.840 0.840 0.848

Key: AUC, area-under receiver operating characteristic curve; DT, Decision
tree; NB, Naive Bayes; SVM, support vector machine.

Based on the highest AUC performance, we proceeded with
the inclusion of SVM with radial bias function kernel classifier
for TA detection. Table II shows the performance metrics for
testing the 5-minute EEG segment for classifying TA or non-
TA activity using the LOSO cross-validation. Confidence in-
tervals are generated from 1,000 bootstrap iterations on a per-
baby, and not epoch, basis. The summarised envelope function
is also included for comparison. We used a threshold value
of 0.93 for the envelope function as this gives approximately
equal sensitivity and specificity (69.9% and 69.9%).

TABLE II: Tracé alternant detection performance comparing
the envelope function with the machine learning approach
using a support vector machine (SVM).

Envelope SVM

Median (95% CI) Median (95% CI)

AUC 0.774 (0.737–0.811) 0.848 (0.805–0.888)
kappa 0.420 (0.347–0.485) 0.549 (0.463–0.627)
Accuracy (%) 73.1 (69.9–76.1) 79.1 (75.2–82.7)
F1-score (%) 62.7 (56.9–67.8) 71.5 (65.1–77.2)

Key: CI, confidence intervals.

The EEG–HIE grading model is developed using the RBF–
SVM TA detector, trained from the first LOSO iteration of
the sleep EEG dataset. Fig. 5 illustrates the features extracted
from the TA detector over 1-hour EEG epochs for each of the
4 HIE grades.

The 2 features of CS, median and log-absolute coefficient
of variation, show changes from positive to negative values as
the HIE grade increases. Also, the number of TA instances,
the overall percentage of TA, and the maximum length of TA
clearly reduce as the grade of HIE increases. We find clear
degrees of separation between the grade 1 and grade 2 for all
3 binary-TA features. The estimated TA number in grade 1
EEG epoch varying from 0 to 3 number, 0 to 2 in grade 2 and
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Fig. 5: Distribution of 5 features estimated from the tracé
alternant (TA) detector for each EEG grade. Top: features of
the continuous confidence score (CS); coefficient of variation
is log-transformed. Bottom: features of the binary output from
the TA detector. Maximum TA length is measured in minutes;
TA percentage is represented as a percentage. Box represent
inter-quartile range, dotted lines represent median values, and
error bars represent 95th centiles.

nearly 0 for grade 3 and 4 EEGs. The maximum estimated
TA length ranges from 1 to 24 minutes for grade 1, under 5
minutes for grade 2 and falls to 0 minute for grade 3 and grade
4. The percentage of TA activity ranges up to 64% for grade
1 and up to 13% for grade 2. The TA detector finds no TA
activity in grade 3 and grade 4. Thus, the binary-TA features
show separation for grade 1 and grade 2 while the CS features
shows separation for all grades, including grade 3 and 4.

Table III presents the confusion matrix for the LOSO cross-
validation using the 5 features of the TA detector across the
1-hour EEG epoch. It shows that 44/54 EEGs were correctly
classified, resulting in an accuracy of 81.5% (κ=0.74). Most
misclassification occurred between grade 3 and 4, which from
Fig. 5 appears to be the harder grades to separate using TA
features alone.

The performance of other state-of-the-art systems which
use the same EEG–HIE dataset compared with our proposed
system are presented in Table IV. The method from Stevenson
et al. (TFDfeat) [9] extracted a complex feature set from
the instantaneous frequency and the instantaneous amplitude
measures of a quadratic time-frequency distribution, combined
using a linear classifier. Raurale et al. (CNN1d) [11] extracts
convolutional features from raw EEG using data-driven deep
learning approach. Ahmed at al. (GSVfeat) [10] used 55
generic features combined using super-vectors from a Gaus-
sian mixture model and classified in a RBF-SVM. Raurale
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TABLE III: Confusion matrix based on the HIE system output
and actual grades.

Actual System’s Output
Total False

grade 1 2 3 4

1 17 (77.3%) 5 0 0 22 5
2 2 12 (85.7%) 0 0 14 2
3 0 2 9 (75.0%) 1 12 3
4 0 0 0 6 (100%) 6 0

Total 19 19 9 7 54 10

et al. (IBIfeat) [12] used two features of inter-burst activity
evaluated from a burst detector and combined in a multi-
layer perceptron. Also, Raurale et al. (TFDCNN) [13] extracts
2-dimension time-frequency distribution map from raw EEG
to extract time, frequency and time-frequency convolutional
features as data-driven deep learning approach. In contrast, our
proposed system operates on evaluating only TA activity, yet it
is still better performance to the TFDfeat [9] and IBIfeat [12]
systems and equal performance to the CNN1d [11] system.

TABLE IV: Comparison of the proposed EEG grading method
with existing techniques on the same database.

HIE Grading TFDfeat GSVfeat CNN1d IBIfeat TFDCNN Proposed

Method [9] [10] [11] [12] [13] method

Accuracy 77.8% 87.0% 81.5% 77.8% 88.9% 81.5%

IV. DISCUSSION AND CONCLUSIONS

We present a novel approach for detecting TA activity in the
EEG of term neonates by combining features of an envelope
function generated from the confidence score of an inter-burst
detector. The detector is developed on an EEG data set of
71 healthy term neonates; testing results indicate moderate-
to-good performance (AUC = 0.85, κ = 0.55, accuracy =
79%, F1 = 72%). This TA detector is then applied to an
EEG data set of 54 term infants in the NICU. Features of
the confidence score and the binary mask of the TA detector
are then used to develop a HIE grading system. This system
achieves comparable accuracy (82%) with other complex,
state-of-the-art methods.

Sleep–wake cycling is an important tool for assessing
recovery in term infants with moderate to severe HIE [2].
We focused on identifying the presence TA, an essential and
distinctive component of the cycle. We expect little to no sleep
cycling in grades 2 to 4 of HIE. The TA detector did detect
some TA activity in grade 2 (see Fig. 5). This may be due
to incorrectly detected periods of discontinuity by the IBI
detector, resulting in false TA detection. For grades 3 and 4,
no TA activity was detected. In contrast, the 2 features of the
continuous-valued confidence score, also in Fig. 5, do indicate
a separation for grades 3 and 4. It is likely that these features
provide the HIE SVM model with sufficient information to
classify grades 3 and 4, as shown in Table III.

In conclusion, we validate the use of an EEG TA detection
method to classify HIE grades. Future systems will combine
interpretable sub-systems such as this one with others, such
as discontinuity detectors for example [12]. By combining
meaningful sub-systems, we aim to improve both performance
and clinical utility.
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