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Abstract—Linear classifiers with random convolution kernels
are computationally efficient methods that need no design or
domain knowledge. Unlike deep neural networks, there is no need
to hand-craft a network architecture; the kernels are randomly
generated and only the linear classifier needs training. A recently
proposed method, RandOm Convolutional KErnel Transforms
(ROCKETs), has shown high accuracy across a range of time-
series data sets. Here we propose a multi-scale version of this
method, using both high- and low-frequency components. We
apply our methods to inter-burst detection in a cohort of preterm
EEG recorded from 36 neonates <30 weeks gestational age.
Two features from the convolution of 10,000 random kernels
are combined using ridge regression. The proposed multi-scale
ROCKET method out-performs the method without scale: me-
dian (interquartile range, IQR) Matthews correlation coefficient
(MCC) of 0.859 (0.815 to 0.874) for multi-scale versus 0.841
(0.807 to 0.865) without scale, p < 0.001. The proposed method
lags behind an existing feature-based machine learning method
developed with deep domain knowledge, but is fast to train and
can quickly set an initial baseline threshold of performance for
generic and biomedical time-series classification.

Index Terms—Preterm, Electroencephalography, Interburst,
ROCKET, Randomised Convolution Kernel

I. INTRODUCTION

Deep learning generalises across a variety of applications
with particular efficacy when applied to large quality data
sets [1]. The self learning of modern deep neural networks
(DNNs) has produced state-of-the-art classification perfor-
mances without the need for user-specific domain knowledge
[2]. Machine learning using hand-crafted features is often
critiqued in deep learning studies due to the reliance on domain
knowledge and time consuming selection or design of fea-
tures [3]. In task-specific implementations however, machine
learning requires skilled feature analysis and DNN design
requires a prolonged trial-and-error process (network crafting).
The effort of designing and training a DNN, however, has
frequently out-performed machine learning for large data sets
[2]. Even in studies with fewer data points, such as neonatal
electroencephalogram (EEG) applications, DNNs can provide
a performance that justifies the effort [4], [5].

Here we seek a different approach: can we apply a machine-
learning system, with relatively good performance, that is
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neither designed nor optimised for a specific application? This
zero-knowledge system would provide a baseline performance
on which all other application-specific methods should im-
prove on. It should also be fast and easy to implement.

We take advantage of recent studies developing and com-
paring general-purpose algorithms applied to a wide variety
of time-series classification problems [1], [6], [7]. Many dif-
ferent approaches have been developed as generic classifiers,
with varying levels of computational efficiency. Deep learning
models, for example, are inherently adaptable to these generic
problems [1], however they can be cumbersome to train and
difficult to settle on a constant network architecture. A recently
proposed method using random convolutional kernels, known
as ROCKET (RandOm Convolutional KErnel Transform), can
be trained in a small fraction of the time compared to DNNs,
with only a slight reduction in accuracy [6].

The ROCKET method consists of a very wide single layer of
random kernels connected to a linear classifier. The production
of many kernels (tens of thousands) can match patterns of
complex shape and frequency in generic time-series data.
Two features of each convolution with the kernel are fed
forward to the linear classifier: the maximum value and the
proportion of positive values (PPV). The PPV adds an element
of nonlinearity, similar in some ways to the rectified linear
unit in DNNs. Without any parameters to select or optimise,
ROCKET is a zero-knowledge machine learning method that
is fast and easy to train. It can set a baseline performance
level for time-series data such as EEG, in a one-size-fits-all
type model.

The ROCKET method includes a dilation parameter, which
downsamples the time-series data before convolution. To avoid
aliasing, a probable outcome when downsampling without an
aliasing filter, we first filter the time-series data. This results
in a multi-scale decomposition of the signal. We also extract
the high-pass components from the decomposition, in addition
to the default low-pass components generated by this multi-
scale analysis. The low-pass component is downsampled. We
compare detection performance of different aspects of the
multi-scale ROCKET method when applied to the problem of
detecting inter-bursts in preterm EEG. Inter-burst waveforms
are characteristic of preterm EEG and are important markers
for estimating brain maturity and neurological well being.
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Fig. 1. Annotations of bursts and inter-bursts of a 50-second EEG segment for 1-channel from 2 different preterm infants.

II. MATERIALS AND METHODS

A. Preterm EEG data set

Individual EEG recordings from 36 preterm infants were
acquired within 72 hours of birth in the NICU of the Cork
University Maternity Hospital, Ireland. Gestational age ranged
from 23.4 to 29.7 weeks with a median age of 27.5 weeks.
EEGs were acquired using the NicoletOne EEG system (Natus
Medical Incorporated, USA) with a minimum sampling rate
of 256 Hz. Eleven electrodes were used in a modified version
of the international 10–20 system, with a reference electrode
at Fz and a ground electrode behind the left ear. Babies
with severe brain injuries were excluded from analysis; brain
injury was determined by a cranial ultrasound within the first
week post-birth. Informed and written consent was obtained
before EEG recording. Data collection was approved by the
Cork Research Ethics Committee of Cork Teaching Hospitals,
Ireland.

One channel was analysed for each EEG recording, alter-
nating over the set of bipolar channels F4–C4, C4–O2, T4–
C4, C4–Cz, F3–C3, C3–O1, C3–T3 and Cz–C3. A continuous
segment per EEG was annotated separately by two clinical
physiologists. This segment was on average 10-minutes in
duration (range: 8.2 to 10.2 hours), had minimal artefact, and
was taken at a mean of 14-hours (range: 3 to 41 hours) after-
birth. This data set is further detailed in O’Toole et al. [8].
Examples of inter-burst annotations are shown in Fig. 1.

B. ROCKET implementation

The ROCKET method convolves a large number (10, 000)
of random kernels with the EEG, extracting 2 features from
each convolution operation. The random kernels contrasts
to the training process of DNNs; however, the variety and
number of kernels can match elements of complex patterns in
the EEG and other time-domain data. The features extracted
from the convolution, representative of different time-domain
waveforms, are combined in a linear classifier using ridge
regression [6].

We express the convolution as the following correlation
operation

x[n] ∗ k[n] =
M−1∑
m=0

k[m]x[n+md] (1)

for epoch x[n] of length-N and kernel k[n] of length-M .
Zero-padding of x[n] avoids wrap-around effects from the
correlation. Because the kernel k[n] is a random sequence
we use the terms convolution and correlation inter-changeably
throughout. The degree of padding is a random parameter of
the method. Dilation factor d, another random parameter of
the method, sub-samples the epoch x[n] when d > 1. Because
no anti-aliasing filtering is present, this will likely result in
aliasing for x[n] and will not capture patterns at different
scales.

We propose a few changes to this approach. First, we
eliminate padding as a random parameter of the method and
always include sufficient padding to avoid the wrap around
effects. We do so to eliminate the role of padding from further
analysis. Thus, x[n] is extended from length N to length
N +M − 1 by padding zeros at the start and end of x[n].
Second, we include scale s as a random parameter, generated
from the exponential distribution

s = b2ac, a ∼ U(0, log2{1 + bN/Mc}) (2)

where U is the uniform distribution. When s > 1, we
first perform a moving-average filtering of x[n] before the
convolution operation in (1):

ylow[n− sh] =
1

s

s−1∑
q=0

x[n− q] (3)

for n = sh, sh + 1, . . . , N + sh − 1, with shift sh = bs/2c.
This shift centres the moving-average windowing and results
in a length-N low-pass filtered signal ylow[n]. We next define
the high-pass component as the residual of x[n] minus the
low-pass component:

yhigh[n] = x[n]− ylow[n] (4)
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A random parameter, a binary variable with equal probability,
determines whether to include the high-pass or low-pass
component in the convolution. For the low-pass signal ylow[n],
we include a dilation parameter by downsampling ylow[ns],
where s is the scale value.

Our convolution operation is then as follows

y[n] ∗ k[n] =
M−1∑
m=0

k[m]ŷ[n−ms] (5)

where ŷ[n] is the zero-padded version of y[n] to avoid wrap
around artefacts and y[n] is either ylow[n] or yhigh[n]. Thus,
our kernels have 5 random parameters:

1) kernel length M , drawn with equal probability from the
set {7, 9, 11} [6]

2) zero-mean k[n] ∼ N (0, 1) of length-M , where N is the
normal distribution [6]

3) bias value b ∼ U(−1, 1), where U is the uniform
distribution [6]

4) scale s, defined in (2)
5) binary variable (yes/no) to decide whether to use the

high- or low-frequency component.
The moving-averaging operation in (3) and residual calcu-

lation in (4) will incur extra computation over the original
definition. As there are many (10,000) kernels per epoch x[n],
this computational load can be minimised with caching of the
high- and low-frequency components for each scale.

Fig. 2 presents an illustration of the convolution process
for an EEG epoch with 2 kernels. The figure illustrates the
process for the original ROCKET method which downsamples
the EEG with dilation factor d (Fig. 2C). The decomposition
of the EEG epoch into high- and low-frequency components
for the proposed method and subsequent convolution with the
kernels are shown in Fig. 2D.

Two features are extracted for each kernel after the convo-
lution operation, thus resulting in a total of 20,000 features
per EEG epoch. These features are:

• Maximum value of the convolution operation

MAX = max{x[n] ∗ k[n]}

• Proportion of positive values

PPV =
1

N

N−1∑
m=0

[(x[n] ∗ k[n])m + b > 0]

Where b is the bias scalar and [·] represents the Iverson bracket,
that is [P ] = 1 when P is true and [P ] = 0 otherwise.

To assess the utility of the modifications to the convolution
kernel from the original ROCKET method, we try 4 different
experiments on the preterm EEG data set:

1) No scaling (set s = 1): x[n] ∗ k[n] + b
2) Multi-scaling: ylow[n] ∗ k[n] + b when s > 1
3) Multi-scaling with high- and low-frequencies:

yhigh[n] ∗ k[n] + b or ylow[n] ∗ k[n] + b when s > 1
4) Multi-scaling with high- and low-frequencies

and dilation:
yhigh[n] ∗ k[n] + b or ylow[ns] ∗ k[n] + b when s > 1

A.

B.

C.

D.

Fig. 2. Convolution example. A: Normalised 2-second EEG epoch x[n]; B:
Kernels k1[n] of length-7 and k2[n] of length-11. C: EEG epoch x[n] with
downsampled epoch x[nd] for dilation d = 11 (top); convolution output
from downsampled component x[nd] with kernel k1[n] and kernel k2[n]
(bottom). D: Low-frequency component ylow[n] generated from an 11-second
moving-average window on x[n] and high-pass component as the residual of
signal and low-pass component (yhigh[n] = x[n]−ylow[n]) (top); convolution
outputs from low-pass component and kernel k1[n] and high-pass component
and kernel k2[n] (bottom).

The multi-scale ROCKET methods are available as Python
code at https://github.com/otoolej/ms rocket (version 0.1).
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TABLE I
COMPARISON OF INTER-BURST DETECTION METHODS USING DIFFERENT

RANDOM KERNEL APPROACHES. ALSO INCLUDED IS THE EXISTING
MULTI-FEATURE MACHINE LEARNING METHOD [8].

MCC MCC
model median (IQR) range

Random kernel methods:
No scale 0.841 (0.807 to 0.865) (0.512 to 0.913)
Multi-scale (MS) 0.857 (0.814 to 0.871) (0.503 to 0.916)
MS-HLF 0.859 (0.815 to 0.874) (0.495 to 0.916)
MS-HLF and dilation 0.839 (0.798 to 0.865) (0.476 to 0.918)

Knowledge-based approach:
Multi-feature SVM 0.866 (0.813 to 0.897) (0.668 to 0.925)

Key: IQR, interquartile range; HLF, high- and low-frequencies; MS, Multi-
scale; SVM, support vector machine; MCC, Matthews correlation coefficient

C. Training and testing

EEG was downsampled from 256 Hz to 64 Hz after
applying an anti-aliasing filter [8] and then normalised by
subtracting the median and dividing by the interquartile range
(IQR). Normalisation is a requirement of the ROCKET method
[6]. Median and IQR estimated during training were used
in testing. EEG was segmented into 2-second epochs with
with an overlap of 25% for training and 93.75% for testing.
Overlap was lower for training, with an equivalent sampling
frequency of 2 Hz, to reduce computational load. To better
assess performance, overlap for testing was higher with an
equivalent sampling frequency of 8 Hz, above and beyond the
resolution of the experts’ annotations. In training, a burst or
inter-burst label was assigned if either exceeded an arbitrary
threshold of greater than 90% of samples per epoch. Reducing
this threshold below 100% allowed us to include more data
for training, in particular epochs closer the start or end of
inter-bursts.

Using a leave-one-out cross-validation loop we iterate
through the left-out preterm EEG creating a testing and
training set with one and 35 preterm neonate(s) per loop
respectively. A ridge regression classifier is trained and tested
on the 20, 000 features (2 features per convolution of 10, 000
kernels) for each 2-second epoch. The `2 regularisation pa-
rameter α was set to the the default value α = 1.

Performance was analysed by Matthews correlation coef-
ficient (MCC), a more descriptive summary measure of the
confusion matrix for imbalanced data sets than the commonly
used (in neonatal EEG literature [8], [11]–[13]) area under
the receiver operator characteristic curve (AUC). The proposed
ROCKET inter-burst detector methods are compared with an
existing multi-feature support vector machine (SVM) method
[8]. We compare the differences in MCC using the Wilcoxon
signed-ranked test.

III. RESULTS

Detection performance for the methods are presented in
Table III and illustrated in Fig. 3. The multi-scale (MS)
ROCKET model with a median (IQR) MCC of 0.857 (0.814 to
0.871) was higher than the method without scale 0.841 (0.807

to 0.865), p < 0.01. The MS high- and low-frequencies (MS-
HLF) model achieved best performance of the implemented
ROCKET methods with median (IQR) MCC of 0.859 (0.815
to 0.874). The MS-HLF significantly (p < 0.001) outper-
formed the MS-HLF with dilation. There was no significant
difference between the MS-HLF and MS model, however both
significantly (p < 0.01) out-performed the standard no scale
ROCKET model, see Fig. 3.
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MS with high/low frequencies (HLF)
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Fig. 3. Performance for inter-burst detector in preterm EEG using random
convolutional kernels. Matthews correlation coefficient (MCC) from leave-
one-baby out testing results for the 4 different approaches to kernel convolu-
tional. Significance: ∗∗ for P < 0.01; ∗∗∗ for P < 0.001; and NS for not
significant (P > 0.05) using the Wilcoxon signed-ranked test. Dots, squares,
and triangles represent median values; lines represent the interquartile (IQR)
range.

The MS-HLF ROCKET model was able to detect inter-
bursts with a high level of accuracy. Nonetheless, as expected,
all the general-purpose ROCKET models under-performed
the application-specific multi-feature SVM model [8]. The
difference in performance was small however: median (IQR)
MCC difference of 0.007 (0.002 to 0.023).

Computational time for the proposed methods is slightly
longer than the original ROCKET method [6], see Table III
for a comparison. This table summarises computational time
for the moving-average filtering and kernel convolutions for
10,000 kernels with an epoch length of 128 samples. These
tests were performed on a desktop computer with a 6 core
CPU (Intel i7-8700K CPU at 3.7 GHz) and 32 GB of RAM.
Convolutions were implemented in parallel. The convolution
operations account for approximately two-thirds of the total
training time; the other one-third is for training the ridge
regression with the 20,000 features per epoch.

IV. DISCUSSION

Convolving the random kernels at multiple scales has a
significant performance improvement (p < 0.001) in our
application of EEG inter-burst detection. This improvement
in performance could be because the proposed method over-
comes the negative effects of aliasing caused by dilation in
the original ROCKET method. Both the MS ROCKET with
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TABLE II
COMPUTATION TIME IN SECONDS FOR CONVOLUTION OPERATIONS OF

10,000 RANDOM KERNELS WITH n-EPOCHS OF 128 SAMPLES.

n = 1, 000 n = 10, 000
mean (SD) mean (SD)

ROCKET method [6] 1.3 (0.01) 13.4 (0.05)
No scale 1.8 (0.02) 17.9 (0.28)
Multi-scale (MS) 1.8 (0.02) 18.8 (0.48)
MS with high- and low-frequencies (HFL) 1.9 (0.00) 19.7 (0.12)
MS-HLF and dilation 1.5 (0.02) 14.8 (0.16)

Key: SD, standard deviation

and without the high- and low-frequency divisions signifi-
cantly outperformed the method without the filtering. The
best performing model included both the high- and low-
frequencies (MS-HLF), which may in some ways replicate the
decomposition of the EEG into the standard frequency bands.
These processes are not directly comparable however, as the
multi-scale filtering decomposes into high- and low-frequency
components only, whereas the filtering operation used for EEG
decomposes into discrete bands.

The general-purpose ROCKET model with MS-HLF was
able to detect inter-bursts with a high level of accuracy in
preterm EEG, but it did not perform as well as the multi-
feature SVM model [8], as detailed in Table III. The difference
in performance is small however, with a median (IQR) MCC
decrease of 0.007 (0.002-0.023) between the two methods.
This is not a surprising result as the feature-based approach
was designed and implemented with years of learned domain
knowledge for the specific task of detecting inter-bursts in the
preterm EEG [8]. Nor does it negate the utility of the ROCKET
approach—it requires no domain knowledge, needs no design,
and is fast to train and test.

The ROCKET method produces 2 features from the con-
volution operation. The MAX feature is similar to the global-
max pooling measure in CNNs, a common measure to reduce
temporal or spatial variance and dimensionality. There is
an important difference here however: there is no nonlinear
function after the convolution operation as there are in CNNs.
The PPV on the other hand, does implement a nonlinear
function by setting negative values to zero, similar to the
rectified linear unit. The PPV is a proportional measure of the
positive values produced when the EEG matches samples of a
given random pattern. Bias, b, acts as a threshold for a stronger
pattern matching measure when negative, and includes weaker
matches when positive. In the original ROCKET method, PPV
was found to be a more important feature than MAX, and both

Our results show that a multi-scale anti-aliasing approach
does improve on the basic ROCKET method, for our specific
application. In future work we could compare performance
with a broader array of time-series classification problems, for
example by using the UCR archive [6], [7]. Future work could
also include a band-pass decomposition to replace the multi-
scale decomposition, by using a discrete wavelet transform.
Although this transform would be computationally efficient

together proved best [6].
compared to a filter-bank approach, our multi-scale ROCKET
uses the residual of a low-frequency signal to obtain a high-
frequency component and is therefore not equivalent to band-
pass filtering. The MS-HLF ROCKET also omits the dilation
factor that generates downsampling but it is a part of the
discrete wavelet decomposition.

The multi-scale ROCKET model could be used as a fast and
easy implementation to set a baseline performance in future
neonatal EEG applications. We suspect in some applications
that a baseline performance will suffice, and certainly an
important first step for comparison with bespoke solutions.
The method is applied without prior knowledge of the signal
characteristics or without the need to design a feature set
or neural network architecture. A one-size-fits-all press play
model for time-series classification and regression problems.
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