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Abstract—Because there are many cases wherein abnormal 

sounds, which are called adventitious sounds, are included in the 

lung sounds of a subject suffering from pulmonary disease, the 

objective of this study was to automatically detect abnormal 

sounds from auscultatory sounds. To this end, we expressed the 

acoustic features of the normal lung sounds of healthy subjects 

and abnormal lung sounds of patients using hidden Markov 

models (HMMs), and distinguished between normal lung sounds 

and abnormal lung sounds. In our previous study, we 

constructed left-to-right HMMs with limited states. Because we 

expressed the abnormal sounds that occur intermittently and 

repeatedly using limited states, the HMMs could not express the 

acoustic features of abnormal sounds. Therefore, the 

classification rate between normal and abnormal respiration 

was low (86.53%). In this paper, we propose the construction of 

ergodic HMMs with a repetitive structure for intermittent 

abnormal sounds. By using a HMM that can express the acoustic 

features of abnormal sound in detail, the classification rate 

increased (88.81%). The results obtained by this study 

demonstrate the effectiveness of the proposed method. 
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I. INTRODUCTION 

The auscultation of the lungs is a means of detecting 
patients suffering from pulmonary disease. Despite other non-
invasive inexpensive methods, auscultation using a 
stethoscope can obtain valuable information regarding the 
health status of an individual. In many cases, abnormal sounds 
(called adventitious sounds [1]) are included in the lung 
sounds of a subject suffering from pulmonary disease, and 
auscultation is nowadays an effective method for diagnosing 
pulmonary disease. However, this method requires expert 
knowledge and experience. Therefore, identifying the 
difference between healthy and afflicted subjects is difficult 
for non-medical personnel, and this may be the reason that 
auscultation does not penetrate common households. 
Furthermore, it is difficult for the elderly or individuals living 
in depopulated areas to visit the hospital. Thus, the distinction 
between healthy and afflicted subjects at home will facilitate 
the early detection of pulmonary disease. 

Several studies have focused on automatically 
detecting adventitious sounds from lung sounds [2–4]. 
These studies either detected a specific adventitious sound 
using a wavelet transform or distinguished the frame of an 
adventitious sound using the short-time spectrum. 
However, the time of occurrence and the duration of 
adventitious sounds vary. Therefore, it is desirable to 
discriminate sounds using the 

features of the entire respiration and its inflection. 
Furthermore, the features of adventitious and respiratory 
sounds depend on each individual and the progress of the 
disease. Therefore, we considered that these features should 
be expressed statistically. In a previous study, we expressed 
the time-series of the acoustic features of lung sound by 
constructing hidden Markov models (HMMs), and 
discriminated between normal and abnormal respiratory 
sounds [5, 6]. Moreover, we constructed HMMs with high 
accuracy by selecting a suitable number of states and mixtures 
for adventitious sound segments [7]. However, we did not 
consider the suitable state transition of the HMMs. Fig. 1 
shows an example of respiratory sounds that include 
adventitious sounds called fine crackle. Adventitious sounds 
are divided into two classes: continuous adventitious sounds 
and discontinuous adventitious sounds. For example, fine 
crackle is a type of discontinuous adventitious sound. 

The distinctive feature of discontinuous adventitious 
sounds is that short sounds occur repeatedly. We considered 
the discontinuous adventitious sound period as a steady state 
and expressed it using a left-to-right HMM. However, the 
classification rate between normal and abnormal respiration 
was low. Hence, we concluded that these models are not 
suitable and focused on analyzing the topology of acoustic 
models. 

Fig. 1. Example of respiratory sound including adventitious sound. 

In this paper, we propose the construction of an ergodic 
HMM for discontinuous adventitious sounds. To construct the 
ergodic HMM, we set a suitable analysis frame length and 
appropriate frame intervals. 
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II. LUNG SOUND DATABASE 

A. Hand Labeling 

We recorded lung sounds using an electronic stethoscope. 
Subsequently, we performed segmentation manually based on 
the recorded sounds, waveform, spectrogram, and power. First, 
we divided the lung sounds into inspiration and expiration 
sound segments (respiratory sound segments). Next, we 
divided the respiratory sound segments into continuous 
adventitious sound segments, discontinuous sound segments, 
and other breathing sound segments. If the occurrence interval 
of the adventitious sounds was shorter than 100 ms, we 
considered this as a single segment. 

B. Definition of Normal and Abnormal Respiration 

The acoustic features of some noises are similar to those 
of adventitious sounds. Some respiratory sounds produced by 
healthy subjects include noises, which makes diagnosis 
difficult for individuals without medical training. Conversely, 
some respiratory sounds produced by patients do not include 
adventitious sounds. However, we cannot term these sounds 
as normal respiratory sounds. Therefore, normal and abnormal 
respiration must be defined. In this study, respiratory sounds 
were grouped into four categories. 

-Abnormal respirations of patients (AP): the respirations 
include adventitious sounds produced by patients. 

-Abnormal respirations of healthy subjects (AH): the 
respirations include noises resembling the adventitious sounds 
produced by healthy subjects. 

-Normal respirations of patients (NP): the respirations do 
not include adventitious sounds or noises resembling the 
adventitious sounds produced by patients. 

-Normal respirations of healthy subjects (NH): 
respirations do not include adventitious sounds or noises 
resembling the adventitious sounds produced by patients.  

In the experiment for discriminating between normal and 
abnormal respiration, we considered NH as normal respiration 
and AP as abnormal respiration. In other words, we did not 
use AH and NP. However, we did consider all respirations in 
the experiment for discriminating between healthy subjects 
and patients. 

III. CLASSIFICATION PROCEDURE 

A. Procedure for Classification between Normal and 

Abnormal Respiration 

Generally, in the field of speech recognition, the acoustic 

models of the phoneme (as the smallest unit of speech) and 

the occurrence probability of words are used to construct 

stochastic models. In this study, this technique was applied to 

lung sounds. Fig. 2 shows the architecture of the system for 

classifying normal and abnormal respiration [6].  

The classification procedure consists of training and test 

processes. In the training process, the HMMs, as the acoustic 

model and segment sequence model [6] that defines the 

occurrence probability of the divided segments, are trained. 

In the test process, the input respiration is distinguished as 

normal or abnormal respiration based on the maximum 

likelihood approach. If we assume that the sample respiration 

𝑊  consists of 𝑁  segments, it can be expressed as 𝑊 =
𝑤1𝑤2 ⋯ 𝑤𝑖 ⋯ 𝑤𝑁, where 𝑤𝑖  is the 𝑖th segment of 𝑊.  

The training process is as follows. First, we extract the 

acoustic features and train each segment. In the case of 

normal respiration, there is one segment (𝑁=1). Conversely, 

in the case of abnormal respiration, which includes 

adventitious sounds, there are at least two segments (𝑁 ≥ 2). 

For example, the inspiration case shown in Fig. 1 consists of 

one fine crackle segment and two breathing segments (𝑁=3). 

The expiration case shown in Fig. 1 does not include 

adventitious sounds, and consists of one breathing sound 

segment (𝑁=1). The training of the segment sequence model 

is as follows. The occurrence probability of segments 𝑃(𝑊) 

is calculated using a segment bigram; 𝑃(𝑊) can be written 

as follows: 

𝑃(𝑊) = 𝑤1 × ∏ 𝑃(𝑤𝑖|𝑤𝑖−1)𝑁
𝑖=2 .                                  (1) 

Let 𝑃(𝑤𝑖|𝑤𝑖−1) be defined as 

    𝑃(𝑤𝑖|𝑤𝑖−1) = 𝐶(𝑤𝑖|𝑤𝑖−1) 

                           = (𝑤𝑖−1,  𝑤𝑖) 𝐶(𝑤𝑖−1)⁄ ,                            (2) 

where 𝐶(𝑤𝑖) is the count of 𝑤𝑖 ,  𝐶(𝑤𝑖−1) is the count of 𝑤𝑖−1, 

and 𝐶(𝑤𝑖|𝑤𝑖−1) is the count of segment 𝑤𝑖  after 𝑤𝑖−1 in the 

training database. 

The test process is as follows. The maximum likelihood 

among the calculated likelihoods is determined, and the 

corresponding segment sequence 𝑊̂ is selected to identify the 

Fig. 2.  Architecture of system for classification between normal and abnormal respiration. 
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sample respiration sound. If the sequence includes at least one 

adventitious sound, we identify the sample respiration as an 

abnormal sound. Otherwise, we identify the sample 

respiration as a normal sound.  

𝑊̂ can be written as follows: 

𝑊̂ = argmax
𝑊

(log𝑃(𝑋|𝑊) + 𝛼log𝑃(𝑊)),                    (3) 

where 𝑋  is the sample respiration and log𝑃(𝑋|𝑊)  is the 

acoustic likelihood. The weight factor was obtained 

experimentally.  

B. Procedure for Classification between Healthy Subjects 

and Patients 

This section describes the detection of patients by using a 

series of respirations [8]. Noises from outside of the body 

occur irregularly. In contrast, adventitious sounds occur 

periodically. Therefore, in the case of healthy subjects, most 

respirations are classified as normal, even if one or a few 

respirations are classified as abnormal respiration. In other 

words, for healthy subjects, most of the likelihood values for 

normal respiration are higher than the likelihood values for 

abnormal respiration, even if one or a few respirations are 

classified as abnormal respiration. For the detection of 

patients, we calculate the likelihood L(𝑊𝑛𝑜) for the segment 

sequence 𝑊𝑛𝑜 that does not include adventitious sounds and 

the maximum likelihood L(𝑊𝑎𝑏) for the segment sequence 

𝑊𝑎𝑏  that includes adventitious sound segments, for each 

respiration. If the total L(𝑊𝑎𝑏) is greater than or equal to the 

total L(𝑊𝑛𝑜), the subject is classified as a patient. In other 

words, the following relationship holds:  
∑ L(𝑊𝑗,𝑎𝑏) ≥ L(𝑊𝑗,𝑛𝑜)𝑗                                                (4) 

where L(𝑊𝑗,𝑎𝑏) is the likelihood of the segment sequence that 

includes adventitious sound segments in the 𝑗th  respiration of 

the subject, and L(𝑊𝑗,𝑛𝑜) is the likelihood for the segment 

sequence that does not include adventitious sound segments 

in the 𝑗 th respiration of the subject. For each auscultation 

point, we classify the respiration series as a healthy subject or 

a patient. 

IV. CONSTRUCTION OF APPROPRIATE HMM FOR 

DISCONTENIOUS ADVENTITIOUS SOUNDS 

In our previous studies [5-8], we used left-to-right HMMs 
for each segment, as shown in Fig. 3(a), and concluded that 
these models are not suitable. Therefore, we focus on 
analyzing the topology of acoustic models. To construct 
HMM that is appropriate for discontinuous adventitious 
sounds, we assume that the discontinuous sound period 
consists of the repetition of an abnormal sound period and a 
silent period. Then, we construct the ergodic HMM as shown 
in Fig. 3(b). Furthermore, to construct the ergodic HMM, we 
select the suitable analysis frame length and frame intervals  

 

 

(a) Left-to-right HMM                                                        (b) Ergodic HMM 

 

Fig. 3.  Topology of HMMs. 

because an abnormal sound period and a silent period are too 
short to analyze using typical values used in the frequency 
analysis of speech. 

V. EVALUATION EXPERIMENTS 

A. Experimental Conditions 

Six Mel-Frequency Cepstrum Coefficients (MFCCs) and 

the power were extracted as acoustic features using a 

Hamming window. The lung sound data were sampled at 5 

kHz. Fig. 4 shows the auscultation points. In this study, the 

auscultated lung sounds from nine points ( P1 - P9 ) were 

considered in the experiments. The number of abnormal 

respiratory sounds and number of patients are listed in 

TABLE I. As many normal respirations and healthy subjects 

were randomly selected for the experiments. We performed 

leave-one-out cross-validation to construct a subject-

independent model. 

 

 
 

Fig. 4.  Auscultation points. 

TABLE I.  NUMBER OF ABNORMAL RESPIRATORY SOUNDS AND PATIENTS 

Auscultation 
Points 

Number of Abnormal 
Respirations 

Number of Patients 

P1 219 44 

P2 161 89 

P3 254 53 

P4 217 47 

P5 312 62 

P6 206 52 

P7 182 46 

P8 324 62 

P9 260 62 

Total 2135 517 

B. Classification Experiments 

We compared the left-to-right HMM and ergodic HMM 
and selected the analysis frame length and frame intervals. 
First, we set the analysis frame length to 25 ms and the frame 
interval to 10 ms, as in our previous study [5–8]. Subsequently, 
we selected several frame length and frame interval 
combinations, as presented in TABLE II. Fig. 5 shows the 
classification rate between normal and abnormal respiration 
using left-to-right HMM. When the analysis frame length and 
frame interval were too small, the classification rate decreased 
because the frequency resolution was low. Fig. 6 shows the 
classification rate between normal and abnormal respiration 
using ergodic HMM. The accuracy was lower than that of the 
left-to-right HMM for which the analysis frame length was set 
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to 25 ms and the frame interval was set to 10 ms. The reason 
for this is that the analysis frame length and frame interval 
were too large to express the acoustic features of each 

intermittent sound. Then, we set the frame length and frame 

interval to a somewhat small value (Condition C) and the 
classification accuracy increased. This result indicates the 
significant effectiveness ( 𝑝 = 0.0007 ) of constructing an 
ergodic HMM of discontinuous adventitious sounds. When a 
suitable analysis frame length and an appropriate frame 
interval were set, the ergodic HMM could express the acoustic 
features of intermittent sounds. 

TABLE II.  COMBINATIONS OF FRAME LENGTH AND FRAME INTERVAL 

Conditions Frame Length Frame Interval 

A 5 2 

B 10 4 

C 15 6 

D 20 8 

E 25 10 

F 30 12 

 

 

Fig. 5.  Classification rate between normal and abnormal respiration using 

left-to-right HMM. 

 

 

Fig. 6.  Classification rate between normal and abnormal respiration using 

ergodic HMM. 

Finally, the experiment for classification between healthy 
subjects and patients is discussed. TABLE III presents the 
classification rate of healthy subjects and patients. Both 
models use the best combination identified in the previously 

mentioned experiments to classify normal respiration and 
abnormal respiration. 

The results obtained by the experiment for classifying 
healthy subjects and patients indicate that there is room for 
improving the classification rate. In this study, however, the 
improvement was not significant because the number of test 
subjects was small. 

TABLE III.  CLASSIFICATION RATE BETWEEN HEALTHY SUBJECT AND 

PATIENT (%) 

Type of HMM Healthy Subject Patient Average 

Left-to-right HMM 88.8 84.4 86.4 

Ergodic HMM 90.4 86.2 88.3 

VI. CONCLUSIONS 

This paper proposes the construction of an ergodic HMM 
for abnormal sounds that occur intermittently and repeatedly. 
To construct the HMM with a repetitive structure, we set a 
suitable analysis frame length and appropriate frame intervals. 
The results obtained by the classification experiment confirm 
that the classification rate improved when the frame length 
and frame interval were set to be slightly smaller than the 
typical values used in the frequency analysis of speech. Thus, 
the effectiveness of the proposed approach is demonstrated. 
However, in the experiment for classifying healthy subjects 
and patients, the improvement was not significant because the 
number of test subjects was small. 

In future work, we will clarify the suitable topology of 

HMMs using a deep neural network, which has been proven 

to be effective in the field of speech recognition. 
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