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Abstract—Preterm birth is sometimes associated with neu-
rological disorders caused by lesions of the developing brain.
A diagnosis in the first weeks of child’s life is important
to plan timely and appropriate rehabilitative interventions for
infants at risk of neuro-motor disabilities. A largely adopted
method for the early diagnosis of neuro-motor disorders is
the General Movements assessment, based on the evaluation
of infants’ spontaneous motor patterns. However, an accurate
clinical assessment of infant motion requires highly specialized
personnel, not always available at all sites. To insure an objective
motion analysis, several studies proposed the use of marker-
based techniques. Unfortunately, markers are uncomfortable
and can affect the naturalness of the motion. Therefore, much
effort has been dedicated in developing marker-less techniques
targeting unobtrusive and reliable motion analysis. In this work
we propose a marker-less video-based methodology to analyze
infants’ spontaneous movements in RGB videos. First, we detect
relevant landmarks on the infants’ body. Then, we compute
kinematic parameters that describe infants’ motion patterns. We
validate the effectiveness of the computed parameters on a dataset
of 68 infants, 27 of which with a clinically-assessed evidence
of neuro-motor disorders: our method successfully discriminates
infants with and without motor disorders with an accuracy of
78.2%.

Index Terms—Human Motion Analysis, Video Analysis, Mark-
erless, Semantic Features

I. INTRODUCTION

According to the World Health Organization (WHO),
preterm birth is the leading cause of death in children younger
than 5 years worldwide. Preterm survival rates have increased
in high-income countries thanks to the development of inten-
sive care techniques. However, with the increase of preterm
survival rate, also the incidence of neurological diseases grows
and many of the surviving infants face a life of disability,
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including learning, visual and motor difficulties [2]. Common
neurological disorders that could occur in this early stage of
life can be grouped under the ’umbrella’ term of Cerebral
Palsy (CP): they include permanent but not progressive lesions
of the developing brain [11].

An early diagnosis of pathological cases would allow the
start of early rehabilitation treatment that could significantly
increase the chances of recovery. In this scenario, it is crucial
to find reliable and objective techniques which may support
physicians in the study of children’s neurological status. With
the use of magnetic resonance imaging (MRI) it is possible
to obtain a thorough investigation of any lesions in specific
areas of the brain. However, MRI is not always available
due to the high costs and to the organizational difficulties
[7]. Other approaches to neurological evaluation include: (1)
traditional neurological examination [15] and (2) neurological
examination based on the observation of spontaneous motor
behavior such as the General Movements (GM) theory [16].
GMs are spontaneous movements of variable amplitude and
speed involving all parts of the body and they accurately reflect
the state of neuro-motor development [16]. This type of study
involves highly specialized personnel for a long amount of
time, and is often operator dependent [1]. For these reasons,
there is a need for objective methodologies able to extract
quantitative parameters that represent infants’ motion patterns.

In the field of human motion understanding, an accurate
quantitative analysis of the movement can be achieved thanks
to marker-based motion capture systems [13]. However, mark-
ers and sensors placed on the body are cumbersome and they
could prevent the naturalness of the motion [6], especially in
infants. For these reasons, recently, marker-less techniques for
human motion analysis based on computer vision have been
studied [5], [8]: they have the potential to solve or reduce
some of the issues of marker-based approaches, as they allow
for a natural person-friendly interaction, they are non invasive
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and inexpensive.
The first approaches to video-based infants’ motion analysis

[1], [20] are based on change detection. In both cases the
parameters extracted were adopted to perform a classification
task between infants with and without neuro-motors disorders.
Baccinelli et al. [3] provide a semi-automatic software package
with a graphic user interface in order to track the movement
of hands and feet. Kawashima et al. [10] propose a method
to study infants’ crawling starting from videos acquired from
two different view-points and extracting infant’s shape-based
parameters starting from a background subtraction. To the best
of our knowledge there is a limited number of studies in the
literature focused on markerless joint detection techniques to
study infants’ motion. Our work tries to address this problem.
The main software requirements of the application field are a
good accuracy and some level of interpretability of the results.
The latter drives us towards a two-levels architecture (repre-
sentation + classification) instead of an end-to-end one. We
address accuracy by relying on few stable semantic features.

We propose a novel 2D marker-less motion analysis system
based on a single RGB camera (see Figure 1) to evaluate
infants’ motion during short acquisition sessions taking place
in their first weeks of life. Our goal is to identify early signs
of neurological disorders. We focus on a 2D pipeline because
our long term goal is to provide an easy to use methodology
which could also be applied at home.

The pipeline we propose includes (1) video representation:
we detect the (x, y) positions of relevant landmark points
(nose, hands and feet) in the image plane; we filter them
in order to add a spatio-temporal consistency, and then we
compute quantitative parameters inspired by the neuro-motor
literature to describe infant’s motion [13]; (2) classification:
the extracted parameters form a feature vector we use as input
of a binary classifier for the discrimination of infants with
and without neuro-motor disorders. This stage also incorpo-
rate a greedy feature selection procedure, to select the most
meaningful parameters in the feature vector. Our experimental
assessment is based on a clinical dataset that includes videos
of 68 infants, with 55 born preterm, of which 27 present neuro-
motor disorders. The main result of our analysis is a binary
classifier able to discriminate between infants with and without
neuromotor disorders.

We obtain very promising results (78.2% overall accuracy)
by analysing videos acquired at the 40th gestational week;
notice the clinical assessment we use as a ground truth
has been reached two years later in the infants’ life . This
observation speaks in favour of the predictive potential of our
approach and its applicability as an early diagnosis tool.

II. DATASET AND PROPOSED PIPELINE

A. Dataset

The dataset adopted for the study includes 68 infants. The
study and the consent form signed by parents were approved
by the Giannina Gaslini Hospital Institutional review board on
20/06/2013 (protocol number: IGGPM01). For each infant, one
video was acquired at 40 weeks of gestational age (40 weeks

after the conception) with a RGB camera (Canon Legria HF
R37, acquiring at 25 frames per second (fps) with a resolution
of 1080x1920 pixels). The camera was installed on a support
above the child at a distance so that all the movements are
always within the field of the camera itself (Figure 1). The
videos present different backgrounds (and cots with different
colors). Each video lasts about 5 minutes during which the
infants are moving freely, supine, and they are not crying: 13 of
the infants acquired are born at-term and the other 55 are born
preterm. According to the medical experts’ evaluations, among
the preterm infants, 28 present normal motion patterns and the
other 27 present neuro-motor disorders. The clinical evaluation
is based on the Bayley test [4], performed by expert physicians
involved in the study two years after the video recording.

Fig. 1. Left: data acquisition setup with the camera view-point. Right:
example of detected points (nose, hands, feet) - image cropped to improve
visibility, face anonymised for privacy.

B. Anatomical points detection and filtering

In order to perform our analysis, we detect the position in
the image plane of some anatomical points: for this study we
consider few but highly distinctive semantic features (nose,
hands and feet), which are stable across different subjects and
acquisition conditions. For this purpose, we train a semantic
feature detection architecture, DeepLabCut (DLC) [12], with
examples from our dataset on the chosen anatomical points.
DeepLabCut is composed by a variant of Residual Deep
Network (ResNet-50) with a final deconvolutional layer to
extract spatial density probability maps associated with each
point. The model is pretrained on ImageNet. To train the
network, we randomly select 10 frames in 55 videos (for a total
of 550 frames) and we manually label the points of interest.
The parameters used to train the network are the one suggested
in [12] and in other applications like [14].

For each frame of each video, DeepLabCut
returns a set of points {(xti, yti , `ti)}Tt=0 with
i = {nose, left hand, right hand, left foot, right foot},
(xti, y

t
i) is the position of the i−th point in the t−th frame

and `ti —a number in the interval [0, 1]— is its corresponding
likelihood; the latter allow us to quantify the uncertainty
behind the detection of each point in each frame (see an
example in Fig. 1 – green circles are the detection, red dots
the ground truth). The detected features are quite stable across
training and test; Table I reports the mean error (euclidean

1197



distance) and the correspondent standard deviation (SD) in
pixels for each detected point.

The choice of DeepLabCut has been mainly guided by three
reasons: (1) it requires a very limited number of annotated
examples for the training phase - in the order of few hundreds
[12]; (2) it allows to focus only on the anatomical points we are
interested in, guaranteeing a higher per-point accuracy; (3) as
mentioned in [9], classical full pose estimation methods (e.g.
[5]) are not always appropriate for infants’ motion analysis
and would require a significant amount of fine tuning and
the need of a large dataset we do not possess. Moreover,
DeepLabCut has the appropriate robustness-complexity trade-
off for our specific study-case, where the subject movement is
unconstrained, but limited by the specific development stage,
the background is uniform, and only one subject is present in
the scene.

To confirm this, in Table I we report the mean error in pixels
for the same landmark points obtained with DeepLabCut and
the full pose estimator Openpose [5].

TABLE I
MEAN ERROR ± STANDARD DEVIATION (SD) FOR EACH POINT IN PIXELS
COMPUTED CONSIDERING A MANUALLY LABELED GROUND TRUTH IN 680

IMAGES.

Point DeepLabCut Openpose
Nose 3.73 ± 2.43 7.68 ± 3.14

Right Hand 5.12 ± 3.35 8.73 ± 3.97
Left Hand 5.34 ± 3.58 8.82 ± 4.73
Right Foot 6.57 ± 4.13 9.74 ± 5.04
Left Foot 6.18 ± 4.28 9.98 ± 5.01

To improve the stability across time of the estimated points
and reduce localization errors, we proceed with a temporal
processing. In particular, we need to: (i) correct the mispre-
dictions of DeepLabCut, which occasionally detects points in
a wrong position; (ii) manage occlusions, for instance if a
hand is hidden by the head.

Errors due to mispredictions are easily recognizable because
they involve a characteristic spike in the sequence of the
point’s coordinates. It is possible to overcome this problem
with a median filter applied to the time sequences of the
individual positions, {xi}Ti=0 and {yi}Ti=0 respectively. In the
case of occlusions, the neural network will find it hard to
identify the position of the occluded point as it is hidden; this
situation is easy to identify as the detection likelihood `i of
the occluded points drops to values close to zero. To overcome
this problem and control information loss, we drop the points
with a small likelihood and then, if the information loss lasts
less than 2 seconds, we interpolate the trajectories in order
to reconstruct the movement of each point in the temporal
interval between their occlusion and their reappearance.

C. Motion descriptors

The qualitative factors that are considered by physicians
during a visual motor evaluation can be summarized in (1)
variability, (2) smoothness and (3) complexity of the motion
[16], [17]. This knowledge is considered as a starting point

to select the correspondent quantitative parameters that are
computed in order to perform a computer-based evaluation
of the motion. Following the considerations done in [13], we
identify a correspondence between qualitative and quantitative
parameters: (1) variability - cross-correlation, (2) smoothness -
skewness and area out of standard deviation, (3) complexity -
periodicity. In marker-based approaches, these parameters are
computed on the (X,Y, Z) coordinates of markers. In our case
we perform a 2D analysis of points extracted from the videos.

1) Cross-correlation: According to GM theory, it is impor-
tant to determine whether the movements of upper and lower
limbs are correlated [16]. To this purpose it is common to focus
on the correlation between limbs’ motion. We compute the
correlation between limbs’ speed, between their acceleration
and their jerk. The same parameters are calculated for upper
and lower limbs [13]. For instance, the cross correlation
(Xcorr) between the speed (v) of left (L) and right (R)
upper/lower limb on a window of N frames (t is the index
for each frame) can be written as:

Xcorrv =
σ2
v,L−R

σv,L ∗ σv,R
(1)

with σv,L and σv,R the standard deviation of the right and left
speed profile and with

σ2
v,L−R =

1

N − 1
∗

N−1∑
t=1

(vL,t − vL) ∗ (vR,t − vR) (2)

v the mean speed across all the frames.
2) Skewness: The skewness is a statistical parameter that

allows us to study the distribution of speed (v) of the upper
and lower limbs [13], [19]. This parameter is useful because,
on average, pathological cases have peaks of higher speed. For
a time window of N frames (with t as index for each frame),
it is defined as:

Skewness(v) =
1

N−1 ∗
∑N−1

t=1 (vt − v)3

σ3
v

(3)

with v the mean speed computed across all the frames and σv
the correspondent standard deviation.

3) Area out of standard deviation of moving average and
area differing from moving average: An important aspect
evaluated by clinicians is movements smoothness. We consider
the area differing from moving average as a measure that
detects the divergence between the real trajectory of a point
belonging to a limb and the trajectory’s moving average of the
same point.

If we consider the x coordinate of a certain point, the
moving average x̃ is the mean of the values of the x coordinate
in each t-th time instant for a total number of k frames is
x̃ = 1

k

∑j+ k−1
2

t=j− k−1
2

xt where j = k+1
2 , . . . , N − k−1

2 represents
the index that allows the selection of k consecutive frames over
their total number N (in our case k = 99, that is equivalent
to about 4 seconds). Then the differences between the moving
average x̃ and the real trajectory x are summed for all the k
frames in the time window:
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Ax =

N− k−1
2∑

j= k+1
2

|xj − x̃j | (4)

Normalizing the differences between moving average and
trajectory on measurement length it is possible to obtain
Anorm,x = Ax

N−k . Finally the calculated areas of each spatial
axes (x and y) and for both left (L) and right (R) limb are
merged A =

∑
sAnorm,s,L +

∑
sAnorm,s,R, with s = [x, y].

In the same way, taking in account x̃ and its standard deviation
it is possible to compute the area out of standard deviation of
moving average.

4) Periodicity: This parameter is important to have an
idea of the degree of complexity of the motion. To compute
the periodicity of the trajectory of a certain landmark point,
the number of intersections between the trajectory and its
mean is determined in a fixed window of frames for each
coordinate (x, y). Then, the temporal distance di between two
intersections is computed and expressed in number of frames.
The mean µd and standard deviation σd of the distances di
are calculated, and the periodicity P (e.g. for the x coordinate)
can be expressed as:

Px =
1

σd,x + µd,x
(5)

In this way it is possible to obtain high values of P
for periodic and fast movements, that can be evidence of
pathological motion patterns [13]. Finally, the periodicity of
each spatial axes (x and y) and for both left (L) and right (R)
limb are merged P =

∑
s Ps,L +

∑
s Ps,R, with s = [x, y].

D. Motion patterns classification

Once we obtain the time sequences of all the points ex-
tracted from a video, we compute a feature vector of the
18 quantitative parameters: cross-correlation of hands speed,
acceleration and jerk; cross-correlation of feet speed, accel-
eration and jerk; skewness of head, hands and feet speed;
nose, hands and feet area out of standard deviation of moving
average; nose, hands and feet area differing from moving
average; nose, hands and feet periodicity.

Preliminary task: we first consider the classification be-
tween at-term and preterm infants as a sanity check for our
pipeline. This experiment allows us to check if the devised
procedure provides us with a reliable account of the infant’s
motion pattern, on a well defined and objective ground truth.

Main task: we then consider a medically-relevant task. We
focus only on preterm infants and address the classification
task of discriminating between the ones with and without
neuro-motor disorders. In this case the ground truth was
provided by physicians based on the Bayley test [4] performed
two years after the video recording.

Classifier design: we compare different classifiers trained
on the feature vector of parameters: a Random Forest (RF), a
fully connected Neural Network (NN) with two hidden layers,
and Support Vector Machines (SVM) with different kernels.

Greedy feature selection: we also reason on the discrimi-
native potential of the features computed and the redundancy
of the feature vector by applying a greedy feature selection
procedure. The choice appears to be appropriate considering
the small size of the feature vectors. We start by addressing a
classification task based on a single (the best performing) pa-
rameter; then, we train a new classifier adding one parameter.
At each iteration we add a parameter and we keep it in the list
if the leave-one-out cross-validation accuracy of the updated
classifier is higher than the one of the previous classifier.

III. RESULTS

A. Preliminary Task: at-term vs preterm

We consider videos of 31 healthy infants: all the 13 born
at-term and 18 born preterm randomly selected among the 28
with normal motion pattern. We first perform the classification
task by considering all the extracted parameters with the
different classifiers and leave-one-out cross-validation.

TABLE II
PRELIMINARY TASK. SUMMARY OF OVERALL ACCURACY (OA) FOR AT

TERM / PRETERM CLASSIFICATION (PAR STANDS FOR PARAMETERS).

Classifier OA all par OA best par
Random Forest 83.9% 90.3%
Neural Network 77.4% 87.1%

SVM Polynomial Kernel 71.0% 96.8%
SVM Gaussian Kernel 67.7% 90.3%

We report the overall accuracy for all the tested classifiers
on both the full feature vector and the best selected features
in Table II. The reported results are very good and highlight
a clear benefit in applying feature selection.

The classifier that allows to maximise the overall accuracy
is the SVM with polynomial kernel with a sensitivity of 100%
and a specificity of 94.4%. For this case the best parameters
selected are: (1) cross-correlation of feet jerk, (2) hands
speed skewness, (3) hands area out of standard deviation of
moving average, (4) nose area differing from moving average,
(5) hands area differing from moving average, (6) feet area
differing from moving average, (7) nose periodicity and (8)
hands periodicity.

B. Main Task: with vs without neuro-motor disorders

We consider 55 infants born preterm. We proceed as in pre-
liminary task and we first consider all the motion parameters
and then a subset of them. The results are reported in Table
III.

TABLE III
MAIN TASK. SUMMARY OF OVERALL ACCURACY (OA) FOR THE

CLASSIFICATION OF CHILDREN WITH AND WITHOUT NEURO-MOTOR
DISORDERS (PAR STANDS FOR PARAMETERS).

Classifier OA all par OA best par
Random Forest 56.4% 69.1%
Neural Network 54.5% 74.5%

SVM Polynomial Kernel 50.9% 72.7%
SVM Gaussian Kernel 50.9% 78.2%
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In this case, variable selection is even more crucial, since
the results obtained by considering the full feature vector are
only marginally above chance. Random forests are the only
exception, since they naturally embed some form of variable
selection. The classifier that maximizes the overall accuracy
is the SVM with gaussian kernel and the subset of parameters
selected are: (1) cross-correlation of hands speed, (2) cross-
correlation of feet jerk, (3) hands speed skewness and (4)
hands area differing from moving average. With this choice,
we reach a sensitivity of 78.6% and a specificity of 77.8%.

C. Comparison with related works

In the reference field of this study, a comparison with
other methods is not straightforward: several approaches
differ significantly in spirit and on the acquisition devices
adopted. Also, more importantly, for privacy reasons bench-
mark datasets are not available. Different studies evaluate
different datasets, in terms of number of infants involved
and in terms of level and intensity of neuro-motor disorders.
We identify one method [13] which shares similarities with
ours, in terms of parameters computed and classification tasks
addressed, even if it is based on motion capture marker-
based data (Vicon 370) and on a completely different infants
population. The study involves a test-set composed by 14
infants (of which 11 healthy) acquired multiple times for
a total of 52 acquisitions (46 of them related with healthy
infants). The classification, also including a feature selection
step and a quadratic discriminant analysis, lead to an overall
accuracy on this test set of 73%. Instead, we consider 55
infants with and without neuro-motor disorders (one video
recording for each infant) and we obtain the accuracy of
78.2%. These results suggest our marker-less approach is in
line with the results obtained by more standard approaches,
while reducing the obtrusiveness of the acquisition procedure.

IV. DISCUSSION AND CONCLUSIONS

In this paper we proposed a new automatic 2D maker-
less pipeline to study infants’ motion. Our pipeline does not
require expensive and intrusive technologies, while reaching
comparable performances. We decided to opt for a 2D pipeline
in order to provide an easy to use system that -in our long term
plan- could be adopted also by non-expert users. We tested the
pipeline on a dataset of 68 children and we addressed two type
of classification tasks. As a sanity check, we first discriminated
between infants born at-term and preterm. This experiment
allowed us to confirm the validity of our automatic analysis,
based on quantitative motion parameters. We then evaluated
the validity of the pipeline in the classification between infants
with and without neuro-motor disorders: we relied on a clin-
ically assessed ground truth provided by physicians after two
years from birth as it is not easy to understand the neuro-motor
status at 40 weeks of gestational age. We report encouraging
results with an accuracy of 78.2%, speaking in favour of the
method’s potential as an early diagnosis tool.

In terms of future developments, one direction is to increase
the set of parameters to include all the possible motion

patterns described by the GMs theory (here we treat only some
spontaneous movements [13]), this would also require a dense
motion estimation [18]. We will also refine the classification
layer by considering different levels of neuro-motor disorders.
Finally, the research will take into account a longer term
infants’ follow-up, analysing videos acquired at different ages
after birth to evaluate the evolution of the motion patterns.
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