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Abstract—Density volumes obtained by three-dimensional re-
construction of biomolecular complexes from cryogenic electron
microscopy (cryo-EM) images (also known as cryo-EM maps)
can be interpreted in terms of atomic positions by flexible fitting.
The fitting modifies an available atomic structure to match the
target EM map. The most accurate fitting methods are based
on atomic-coordinate degrees of freedom (e.g. Bayesian flexible
fitting) but come with high computational cost for large required
displacements. To reduce the computational cost, methods based
on Normal Modes Analysis (NMA) decrease the number of
degrees of freedom to only several collective motions (described
by normal modes). The NMA-based methods are well-suited
for global atomic displacements (large collective motions) but
are suboptimal regarding local atomic displacements. To take
advantages of both methods, we propose to combine them. We
tested our method using synthetic and experimental cryo-EM
maps of a complex with large-scale conformational changes (p97
ATPase). We show that the combination of both approaches
efficiently performs global and local atomic displacements and
that it can be more efficient and precise than any of the two
approaches alone. To the best of our knowledge, this is the first
method combining Bayesian and normal mode flexible fitting
approaches.

Index Terms—Cryo-EM, Flexible fitting, Normal Modes,
Bayesian model, Hamiltonian Monte Carlo, Molecular Dynamics

I. INTRODUCTION

For many years, cryogenic electron microscopy (cryo-EM)
has been drawing attention for its capacity to image structures
of biological macromolecular complexes in their close-to-
native conditions. Until recently, the resolution of the three-
dimensional (3D) maps reconstructed from two-dimensional
cryo-EM images of biomolecular complexes (also known as
cryo-EM density maps or cryo-EM maps) has been lower than
the resolution of structures obtained by X-ray crystallography
(the standard technique to obtain structures at high resolu-
tion until then [1]). Recent progress in cryo-EM instruments
(particularly detector technology advances), high performance
computing technologies, and in image processing algorithms
and software enabled cryo-EM structure reconstruction at near-
atomic resolutions on a more routine basis [2].

To accomplish specific biological functions, biomolecular
complexes change their conformations. The study of confor-
mational variability of complexes is the key to deciphering

their biological functions and to structure-based drug develop-
ment. Unlike X-ray crystallography, cryo-EM allows imaging
and reconstructing multiple different conformational states of
a complex from the same sample [3]. It requires vitrified
samples instead of high quality crystals that are required for X-
ray crystallography. The possibility of achieving near-atomic
resolution of 3D reconstruction and studying conformational
variability of complexes in near-physiological conditions make
cryo-EM a highly interesting technique complementary to X-
ray crystallography. Indeed, a cryo-EM map reconstructed
from cryo-EM images is a density volume and the atomic
coordinates of the complex are usually obtained by flexible
fitting of an available atomic X-ray crystallography structure
of a similar complex or the same complex but in a different
conformation (e.g., structures available in the public database
named Protein Data Bank - PDB, www.rcsb.org).

Flexible fitting methods displace the atoms of the reference
atomic PDB structure to achieve the best match between the
target cryo-EM map and the density map simulated from
the displaced atoms [4]–[6]. The resulting atomic structure,
corresponding to the best fit, may in its turn be deposited
in the PDB database, which is usually done when the pro-
cedure results in the discovery of new conformations. Such
procedures are computationally challenging. Most accurate
methods simulate the physical interaction between atoms by
estimating the force field for each atom [7], [8]. Molecular
Dynamics (MD) simulation estimates deterministic trajectories
based on classical mechanics principles [6], [7]. Monte-Carlo
(MC) is a stochastic method that generates physically probable
conformations [5], [9]. In these methods, the number of the
conformational degrees of freedom is equal to the number
of the atomic coordinates, which allows well-fitting both
global dynamics (collective displacement of atoms) and local
dynamics (local displacement of atoms). This high number of
degrees of freedom comes with a high computational cost, in
particular for large-scale conformational changes (consisting
of large collective atomic motions).

To speed up global dynamics simulations, Normal Modes
Analysis (NMA) [10] is used in some flexible fitting methods
to reduce the number of the conformational degrees of freedom
to a small number of vectors (known as normal modes) along
which atoms move with the corresponding amplitudes (one
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amplitude per normal mode) [4]. NMA only calculates the
directions of motions (normal modes) but not the normal-mode
amplitudes. In flexible fitting methods based on NMA, these
amplitudes are determined by displacing the reference atomic
structure along normal modes until it matches the target cryo-
EM map. Flexible fitting using low-frequency normal modes
proved to be well-suited for fitting between conformations of
complexes with large-scale conformational transitions (large
global dynamics). This suggests that low-frequency normal
modes describe collective (global) atomic motions well and it
was also used in other fitting contexts (e.g., NMA-based fitting
of cryo-EM images with a reference atomic or pseudoatomic
structure to determine continuous conformational variability of
complexes [11]). However, additional exploring of local mo-
tions with NMA-based fitting methods would require including
high-frequency normal modes, either using an entire set of
modes (computationally challenging) or a subset of modes
(none of the selection criteria proposed so far is optimal and
may miss to select some relevant modes).

In this article, we propose a method that combines explor-
ing global dynamics with low-frequency normal modes and
exploring local dynamics with Bayesian fitting. Our approach
is built using a Bayesian model and sampled with Hamiltonian
Monte Carlo (HMC) [9], [12], [13]. HMC combines MD
trajectory and MC stochastic sampling to obtain a more
efficient sampling. Normal-mode amplitude displacement is
added to reduce the computational cost of the fitting. The
tests of the method were performed using synthetic and
experimental cryo-EM maps of the p97 ATPase complex [14].
We show that the combination of the Bayesian and normal
mode approaches efficiently performs both global and local
atomic displacements and that it can be more efficient and
precise than any of the two approaches alone. To the best of
our knowledge, this is the first method combining fitting based
on Bayesian inference and fitting based on normal modes.

II. METHODS

A. Bayesian Model

Flexible fitting of a given atomic structure (reference struc-
ture) into a cryo-EM map (target map) can be defined using
the Bayesian formalism. Notably, the posterior distribution can
be written as follows:

P(r|ρexp) ∝ P(ρexp|r)P(r), (1)

where r is the vector of N × 3 Cartesian atomic coordinates,
N is the number of atoms, and ρexp is the target map.

The most common choice for the prior distribution P(r) is
the Boltzmann distribution [7]:

P(r) = e
−Up(r)

kBT , (2)

where kB is the Boltzmann constant, T is the temperature, and
Up is the potential energy of the system. The potential energy
defines the physical interaction between atoms, which deter-
mines energetically accessible conformations. It corresponds
to a sum of bonded and non-bonded potentials.

The likelihood distribution P(ρexp|r) is the function that
assess the goodness of the match between the target map
and the reference structure that is modified (atomic positions
changed) during the fitting. To this end, a density map is
simulated from the atomic structure and compared with the
target map. The simulated map is obtained by placing a 3D
isotropic Gaussian function at the position of each atom, rn
(n = 1, N ), and by integrating these Gaussian functions over
the center of each voxel. The value of the voxel with the
coordinates (i, j, k) in the simulated map is as follows:

ρrsim(i, j, k) =

N∑
n=1

1

(2πσ2)3/2
exp

(
− 1

2σ2
‖[i j k]− rn‖2

)
,

(3)
where σ is the standard deviation of the 3D Gaussian func-
tions. Note here that rn is the position of the n-th atom and
that r contains the positions of all atoms.

The likelihood is assumed to be normally distributed and
centered at the simulated map, which results in the following:

P(ρexp|r) =
1√

2πσ2
ρ

Nvox∏
l=1

exp
(
− 1

2σ2
ρ

(ρexp(l)− ρrsim(l))2
)
,

(4)
where the voxel coordinates (i, j, k) of ρexp and ρrsim are, for
simplicity reasons, replaced by the voxel indexes l, Nvox is
the number of voxels (l = 1, Nvox), and σρ is the standard
deviation of the likelihood distribution that determines the
desired fitness precision.

Finally, the resulting posterior distribution can be expressed
by combining the prior (2) and likelihood (4) distributions. It
is a common practice to use the logarithm of the posterior
distribution, which simplifies the expression as follows:

log P(r|ρexp) = − 1

2σ2
ρ

‖ρexp−ρrsim‖2−
1

kBT
Up(r)+C, (5)

where C = log 1√
2πσ2

ρ

, and ρexp and ρrsim are vector versions

of the target and simulated maps, respectively (e.g., ρexp is a
vector of voxel values in the target map, ρexp(l), l = 1, Nvox).

In this model, the conformational degrees of freedom are
N × 3 atomic coordinate displacements ∆r defined with
respect to their position in the reference structure, rinit:

r = rinit + ∆r. (6)

This gives the model a flexibility for global and local dynamics
but also comes with a high computational cost of sampling.

B. Normal Modes Analysis

Instead of N×3 conformational degrees of freedom (atomic
displacements ∆r), one can consider using a less detailed
model, which is particularly interesting when dealing with
lower-resolution data. One popular model is the elastic net-
work model [10], where the potential energy is described
by simple harmonic potentials between close atoms and the
dynamics is estimated by Normal Mode Analysis (NMA) of
the reference structure [10]. NMA consists of diagonalizing a
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Hessian matrix of second derivatives of the potential energy
function of size (N × 3)2. This produces a matrix of normal
modes and their associated frequencies. The total number of
normal modes is N×3 and the length of each normal mode is
N ×3. Usually, a small subset of M lowest-frequency normal
modes (describing global, collective motions) is selected to
displace atoms to fit the target map. The atomic displacement
with respect to the reference structure is determined by a linear
combination of the selected modes, as follows:

∆r(q) = q ·A, (7)

where A = {ai} is the matrix of the selected M normal modes
(size M×(N×3)) and q = {qi} is the vector of M coefficients
of the linear combination (M normal-mode amplitudes). The
displaced coordinates are r = rinit + ∆r(q).

The optimal value of q to fit the target map is usually
obtained by optimizing a cost function like the Correlation
Coefficient (CC) [4], [8].

CC =

√∑Nvox
l=1 ρrsim(l)ρexp(l)√∑Nvox

l=1 ρrsim(l)
2
√∑Nvox

l=1 ρexp(l)
2
. (8)

NMA-based fitting is much faster than fitting with other
methods as the number of degrees of freedom is reduced to
M (M normal-mode amplitudes qi, where M << N and,
usually, M < 10). However, the selected lowest-frequency
normal modes fit well global motions but not local motions.

C. Combined Bayesian and Normal Mode Flexible Fitting

In this article, we propose to combine normal mode flexible
fitting (small number of degrees of freedom describing well
global motions) with Bayesian flexible fitting (large number
of degrees of freedom describing well local motions). With
this model, we expect to reduce the computational cost of
fitting large-scale conformational transitions, thanks to NMA-
based fitting, while maintaining the precision of fitting local
dynamics with Bayesian fitting.

To this end, we propose to modify the atomic coordinate
displacement ∆r in equation (6) as follows:

r = rinit + ∆rglobal(q) + ∆rlocal, (9)

where ∆rglobal(q) is the atomic displacement by normal
mode fitting (∆r(q) in equation (7), M unknown parameters,
M << N ), ∆rlocal is the atomic displacement by Bayesian
fitting (∆r in equation (6), N × 3 unknown parameters).

In this model, the total number of parameters is M +N ×
3. These parameters correspond to q and ∆rlocal and will
be estimated simultaneously by sampling from the resulting
posterior distribution P(r|ρexp). In the next section, we focus
on methods for sampling such posterior distributions.

D. Sampling Conformational Space

a) Monte-Carlo methods: Monte-Carlo (MC) are
stochastic approaches that are designed to generate samples
from posterior distributions. One of the most popular
algorithm is the Metropolis algorithm [15]. This method is

an iterative algorithm that performs the sampling in two
steps. First, random displacements are applied to atomic
positions rn at the current n-th iteration, from a transition
distribution T (generally a Gaussian distribution), and a
candidate structure r̃ is generated. Then, the transition kernel
is adjusted to the target distribution by accepting or rejecting
this candidate structure with the acceptation probability α:

α = min

(
1,

P(r̃|ρexp)/T (r̃|rn)

P(rn|ρexp)/T (rn|r̃)

)
. (10)

This acceptation probability means that the candidate structure
is always accepted if it increases the posterior probability, and
sometimes accepted if the posterior probability is not too much
decreased.

The main problem of the Metropolis algorithm comes
from his random walk behavior. In many cases, random
displacement of atoms is very likely to be rejected, especially
in high density regions where atoms are very close and
small displacements make them overlap. In such cases, the
acceptation rate becomes dramatically low, which results in
high inefficiency of the sampling.

b) Molecular Dynamics: One of the most widely used
simulation approaches to exploring conformational dynamics
is Molecular Dynamics (MD) [7]. Unlike MC methods, MD
generates deterministic trajectories based on classical mechan-
ics, which describe the evolution of the structure over time. In
a typical MD simulation, the motion of atoms is estimated by
numerical integration of Newton equation by setting the force
field to be the gradient of the potential energy, Up(r):

F = ∂Up(r)/∂r. (11)

MD simulations have been applied to flexible fitting by
adding a biasing potential to Up(r) i.e., by modifying the
force field F [6]. In these approaches, the biasing potential is a
measure of the goodness of the fit that leads the simulation to
the target density map. The biasing potential measures include
CC (8) and mean square error. When the mean square error is
used as the biasing potential, the MD-based fitting approach is
equivalent to the one with the force field set to be the gradient
of the log-posterior distribution in the Bayesian model (5):

F = ∂ log P(r|ρexp)/∂r. (12)

MD is very time consuming. The time step of the integrator
must remain very small in order to maintain the stability
of the trajectory. This results in high computation times,
especially for large-scale conformational changes [9].

c) Hamiltonian Monte Carlo: Hamiltonian Monte-Carlo
(HMC) method aims at generating samples more efficiently
than MD and MC methods. HMC was originally called
Hybrid Monte-Carlo [12] since it combines deterministic MD
trajectories and stochastic Metropolis acceptation scheme. At
each iteration of the algorithm, a standard MD simulation is
performed and the candidate structure is accepted with the
probability acceptance α as in Metropolis algorithm (10). As
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HMC is based on MD, it uses the gradient of the log-posterior
distribution in the Bayesian model (12) to generate the trajec-
tories. HMC has been successfully applied to flexible fitting [5]
but only using all (N × 3) atomic degrees of freedom (search
for unknown parameters ∆r in equation (6)). This article
shows the first HMC application to a combined Bayesian and
normal mode flexible fitting (search for M +N × 3 unknown
parameters, which includes M normal-mode amplitudes). We
have implemented the log-posterior gradient calculation and
the HMC sampler for this combined model in Python. Our
method searches for q and ∆rlocal (9) so as to efficiently fit
global and local dynamics.

III. RESULTS

In this section, we use synthetic and experimental data of
the human p97 ATPase complex, involved in various cellular
processes, to compare the proposed combined HMC-based
Bayesian and normal mode flexible fitting approach (atomic
coordinates determined by r = rinit + ∆rglobal(q) + ∆rlocal
(9)) with the HMC-based Bayesian and HMC-based normal
mode flexible fitting approaches alone (atomic coordinates
determined by r = rinit+∆rlocal and r = rinit+∆rglobal(q),
respectively). To reduce the computational complexity of each
approach, we here use Carbon Alpha (CA) atoms only, which
is a common practice (coarse-grain approaches).

The three approaches are compared using the data of two
out of several p97 conformations solved by cryo-EM [14].
The most striking difference between the two conformations
is in the position of one of the p97 domains (known as N
domain), which is clearly ”up” in one and ”down” in the
other [14]. We use the following data of these two conforma-
tions, publicly available in the PDB database and the EMDB
database (www.ebi.ac.uk/pdbe/emdb): 1) atomic structure of
the ”down” conformation (PDB code: 5ftm); and 2) cryo-EM
map of the ”up” conformation (EMDB code: EMD-3299).

The results of the following two tests are shown here: 1)
fitting of the PDB-5ftm CA-atom structure of the p97 ATPase
”down” conformation into a synthetic target map obtained
from the 5ftm structure (the mode that lifts up the N domain
of 5ftm was identified and 5ftm was displaced along this
mode, namely mode 9, with the amplitude of -1500 and,
then, energy-minimized with MD, to synthesize large global
and small local displacements, respectively, and the resulting
structure was used to synthesize the map); and 2) fitting of the
PDB-5ftm CA-atom structure of the ”down” conformation into
the experimental EMD-3299 map of the ”up” conformation.
In both cases, flexible fitting was performed using the first
four non-rigid-body modes (modes 7-10), arbitrarily chosen
so as to include mode 9 (N domain lifting). Note that the
first six normal modes are related to combinations of rigid-
body motions and are not used for flexible fitting. The current
implementation of our approach does not perform rigid-body
alignment and, thus, the reference (initial) atomic structure and
the target map are required to be rigid-body aligned before the
flexible fitting can be performed with our approach.

For the first test (test 1), the synthetic target map was
obtained by converting the modified PDB-5ftm structure into
a map of size of 1283 voxels using the method of atomic
scattering factors [16]. For the second test (test 2), the EMD-
3299 map was slightly low-pass filtered and size-reduced to
1283 voxels, which reduces noise and speeds up calculations.
Recall that the simulated maps during the fitting are obtained
using our Gaussian kernel method (3). The use of the atomic
scattering factors [16] for the synthesis of the target map was
decided to get better resolution of the density in the target map
(closer to the density resolution in the experimental cryo-EM
maps) and, at the same time, to make the fitting more difficult
as trying to fit a map whose density resolution is slightly
different from the one that can be simulated with our Gaussian
kernel method (3) during the fitting. The target maps used in
test 1 and test 2 are superposed with the reference (initial)
CA-atom structure in Fig. 1a and Fig. 2a, respectively. The
N domain in both figures is displayed in orange color and is
clearly in ”down” conformation.

We performed 10 HMC runs over 100 iterations. The
structures fitted to the target maps in test 1 and test 2, using the
proposed method (averaging over 10 HMC runs), are shown
in Fig. 1b and Fig. 2b, respectively. We can observe that, in
both tests, the N domain moves from ”down” conformation
at the beginning (initial structure) to ”up” conformation at the
end of the fitting (fitted structure). Fig. 1c and Fig. 2c show
the evolution of the CC (8), averaged over 10 HMC runs, as a
function of HMC iterations, for test 1 and test 2, respectively.
These figures show that the two approaches explicitly fitting
global dynamics (incorporating normal-mode displacements)
converge faster to the equilibrium than the approach based
on fitting local dynamics. This can be interpreted by a fast
large-scale displacement generated by normal modes in the
first iterations, which we observed in the resulting normal-
mode amplitudes. More importantly, Fig. 1c and Fig. 2c show
that the method proposed here (combining fitting global and
local dynamics) achieves the highest CC value in the smallest
number of HMC iterations compared to the other two methods,
in both tests (with synthetic and experimental target maps).
However, in the case of the experimental map, the local fitting
method achieves a slightly worse CC value than the proposed
method, which suggests that the fitting by the proposed method
strongly depends on local fitting in this specific data case. An
explanation for this is that the selected normal modes may not
describe the global dynamics sufficiently well in this particular
data case. Other sets of normal modes may be used in the
future to investigate their contributions. It should be noted
that the search for normal-mode amplitudes takes negligible
time with respect to the search for local fitting parameters.

IV. CONCLUSION

In this article, we proposed a method for flexible fitting
of atomic structures into cryo-EM maps that combines global
and local atomic displacements to speed up the fitting. Global
displacements are performed with normal modes while local
displacements are the three Cartesian coordinate displacements
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(a) Initial (b) ∆rglobal + ∆rlocal

(c) Evolution of CC

Fig. 1: Fitting of the PDB-5ftm CA-atom structure of the p97
ATPase ”down” conformation into a synthetic map using three
approaches (the details on the map synthesis are in the text).
(a,b) Superposition of the target map (transparent gray) with
(a) the initial structure and (b) the fitted structure using the
method proposed here that combines global and local fitting
(100 HMC iterations). (c) Evolution of the CC (average of 10
HMC runs over 100 iterations) for the three fitting approaches.

of each atom. The model is described in the Bayesian for-
malism and sampled using Hamiltonian Monte-Carlo sampler.
To the best of our knowledge, this is the first combined
Bayesian and normal mode fitting method. We demonstrated
its performance with synthetic and experimental data. We
showed that it is faster and achieves better fitting precision
than the classical method that does not take into account
normal modes. In the future, we will perform tests with
experimental cryo-EM maps of other biomolecular complexes,
investigating particularly the cases where normal modes may
be more critical to use to accelerate fitting. The software will
be available as open-source after it is tested with other data.
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