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Abstract—In the last decades, many studies have explored the
potential of utilizing complex network approaches to characterize
time series generated from dynamical systems. Along these lines,
Visibility Graph (VG) and Horizontal Visibility Graph (HVG)
networks have contributed to an important yet difficult problem
in bioinformatics, the classification of the secondary structure of
low-homology proteins. In particular, each protein is presented
as a two-dimensional time series that is later transformed, using
either VG or HVG, into two independent graphs. However,
this is an inefficient way of processing multidimensional time
series as it fails to capture the correlation between the two
signals while it also increases the time and memory complexity.
To address this issue, this work proposes four novel VG and
HVG-based frameworks that are able to deal directly with the
multidimensional time series. Each of the methods generates
a unique graph following a different visibility rule concerning
only the relation between pairs of time series intensities of
the multidimensional time series. Experimental evaluation on
real protein sequences demonstrates the superiority of our best
scheme, with respect to both accuracy and computational time,
when compared against the state-of-the-art.

Index Terms—Visibility Graph, Horizontal Visibility Graph,
Multidimensional time series, Nonlinear time series analysis,
Secondary structure classification

I. INTRODUCTION

Time series analysis comprises statistical models in order
to extract meaningful interpretations for analyzing the sample
data. Transforming time series into graphs opens up the pos-
sibilities of creating fruitful correlations between time series
analysis, nonlinear dynamics, and graph theory. The Visibility
Graph algorithm (VG) [1] and the Horizontal Visibility Graph
algorithm (HVG) [2] are considered two of the most efficient
and simple approaches that can be utilized for mapping
time series and complex networks [3]–[6]. In particular, they
consider the time series points as a sequence of intensity bars
that are then connected based on their inter-visibility.

The accelerated evolution in genomics over the past few
decades has led to a vast volume of protein sequence evidence
from amino acids. The growing need for effective protein
secondary structure classification architectures has therefore
emerged. Along these lines, numerous studies [6]–[11] demon-
strate the potential of transforming the amino acid sequence
into a time series and then utilizing complex network methods
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for the characterization of the arisen dynamical system [6],
[11], [12]. Initially, every amino acid in the protein sequence
is predicted as one of three secondary structural elements,
namely H (helix), E (strand) and C (coil) using the PSI-PRED
tool [13]. Then, by employing the Chaos Game Representation
(CGR) [14] technique, the updated 3-state sequence, that is
of the same length as the original amino acid sequence, is
converted into a graphical form where the x- and y-coordinates
of each point on the graph are considered as two individual
time series that are later analyzed independently with the VG
or HVG algorithms.

Although the aforementioned architecture leads to high-
precision results of the classification of low-homology protein
structures [6], [11], [12], their enhanced performance comes at
the expense of time and memory complexity due to an ineffi-
cient processing of the multidimensional time series data. This
is mainly due to the fact that given a two-dimensional time
series, (i) the graph analysis algorithm is applied independently
to each dimension resulting in a set of two graphs and (ii) a
number of f metrics are employed to characterize each graph
resulting in a total 2× f number of features.

To address the above issue, this work processes directly
the two-dimensional time series by generating a unique planar
graph, considering only the inter-visibility between the pairs
of time series intensities among different dimensions, while,
other methods generate the entire graph for each of the two
dimensions and then apply additional metrics to provide the
final graph [15]. Specifically, we propose two independent
criteria implying that an edge between two nodes exists if
and only if their inter-visibility criterion is satisfied (a) along
every time series dimension (the logical AND operation), or
(b) in at least one dimension (the logical OR operation). The
contributions of this paper are summarized below:
(i) The design of four independent frameworks, namely

mdVG-AND, mdVG-OR, mdHVG-AND and mdHVG-
OR based on the VG and HVG algorithms, to directly
process the two-dimensional time series. Each of the four
frameworks is general, scalable, simple to implement, and
suitable for the analysis of large, heterogeneous and non-
stationary time series.

(ii) The design of a novel feature extraction scheme based on
the best performing scenario that enables the discovery
of representative patterns, increasing the overall accuracy
of the secondary structural class prediction of the protein.
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(a) (b)

Fig. 1: Representation of the same time series into a planar graph utilizing (a) Visibility (VG) and (b) Horizontal Visibility
Graph (HVG) algorithms. Each ti value of the time series, represented as an intensity bar, corresponds to a node (orange dot)
in the final graph given below. The visibility rule between a pair of nodes is represented as a line between the corresponding
time series intensities for the case of VGs and as a horizontal line for the case of HVGs. The dashed red line in (a) highlights
the main difference between VG and HVG algorithm when applied on the same time series.

(iii) The significant reduction of the computational complex-
ity of both the feature extraction and the classification
processes.

The rest of the paper is organized as follows: Section II is an
introduction to the VG and HVG algorithms as well as the met-
rics utilized to characterize the respective graphs. Section III
presents the proposed mdVG and mdHVG architectures that
consist of two independent study case scenarios for each
algorithm. Section IV describes the evaluation dataset and the
classification procedure. Section V represents the experimental
results while Section VI draws the conclusion of this work and
gives directions for future extensions.

II. METHODS

A. Visibility Graphs

A visibility graph (VG) [1] is a graph of inter-visible
locations, typically for a set of points and obstacles in the
Euclidean plane. Each node in the graph represents a point lo-
cation, and each edge represents a visible connection between
them. Specifically, if the line segment connecting two locations
does not pass through any obstacle, an edge is drawn between
them in the graph. When the set of locations lies in a line, this
can be understood as an ordered series. Visibility graphs have
therefore been extended to the realm of time series analysis. To
construct a VG, we consider {ti}Ni=1 as an N time point series
in temporal ordering. The VG is obtained by first representing
the time series points as {ni}Ni=1 nodes in a network, where
the index of nodes i and j represent times ti and tj with
intensities s(ti) and s(tj), respectively. Two arbitrary data in
the time series have visibility and consequently become two
nodes that share an edge in the associated graph, if any other
intermediate time point tk, such as that tj < tk < ti, has
intensity s(tk) that fulfills,

s(tk) < s(ti) + (s(tj)− s(ti))
tk − ti
tj − ti

(1)

A VG representation is given in Fig. 1(a). Some basic prop-
erties of the mapping include undirectedness, connectedness
and invariance under affine transformations. Moreover, in this
work the resulted graph is unweighted. Finally, the properties
of the resulted graph G = (V,E), V = |N |, E = |M |, with N
and M being the number of the nodes and edges respectively,
are represented by the following nine measures (ref. [11]
for the mathematical definitions) that are later employed for
classification purposes,

• Maximum Degree: The degree of a node is the number
of edges connected to the node.

• Average shortest path: The average path length between
two vertices is the shortest distance among them.

• Diameter: The diameter is a measure of the compactness
in a network. Practically, is the longest shortest path
between any two nodes in the network

• Clustering coefficient: The clustering coefficient is a
measure of the degree to which nodes in a graph tend
to cluster together.

• Energy: The energy of a network is defined as the sum
of the adjacency matrix’s eigenvalues.

• Laplacian Energy: The Laplacian energy is a proper
extension of the graph-energy concept.

• Pearson correlation coefficient: To understand whether
an unweighted undirected network is of assortive or
disassortive type, the Pearson correlation coefficient of
the degrees at either ends of an edge is calculated.

• Average closeness centrality: The closeness value is the
inverse of the average distance between two nodes.

• Number of nodes: The number of nodes is an important
feature for the network and it is equal to N.

B. Horizontal Visibility Graphs

A simple and fast computational method, known as horizon-
tal visibility graph (HVG) [2], maps time series into graphs.
HVG is invariant under affine transformations of the series
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Fig. 2: A general example of the proposed (a) AND-based and (b) OR-based scenarios described in Sec. III with the resulting
graph for both VG and HVG algorithms being equal. Suppose a two-dimensional time series. For each dimension d = {1, 2}
the time instance t(d)i , with intensity s(t(d)i ), represents the index of node i. This example focuses only on the visibility between
the first time instance with the rest. Visibility that is met in both dimensions between the same pair of time instances is drawn
with the same colored edge, otherwise the edge color and shape is different. When two time instances share an edge in both
dimensions an AND-based graph arises (a), whereas an OR-based graph results when edges between two intensities meet in
at least one dimension (b).

data and its main focus lies on the time series structural
properties (periodicity, fractality, etc.). Specifically, let a time
series {ti}Ni=1, the HVG algorithm assigns each sample point
ti, with intensity s(ti), as a node in a graph G. Then, two
nodes in the network are connected if any other intermediate
time point tk, such as that tj < tk < ti, has intensity s(tk)
that satisfies the following geometrical rule,

s(tk) < min{s(ti), s(tj)}, i < k < j (2)

In essence, two nodes ni and nj share an edge when a
horizontal line can be drawn among them without intersecting,
in terms of magnitude, any intermediate node, as presented in
Fig. 1(b). In this study, the resulted horizontal visibility graph
is undirected, unweighted and connected. Finally, the features
described in Section II-A can be utilized to form the feature
matrix that will be later serve the classification procedure.

III. PROPOSED ARCHITECTURE

In the herein work we propose four network analysis
architectures based on the VG and HVG algorithms, namely,
mdVG-AND, mdVG-OR, mdHVG-AND and mdHVG-OR,
that are directly applicable to multidimensional time series
data. It is important to note that the novel feature of the herein
work is that instead of constructing the entire graph for each
of the two dimensions and then applying various techniques to
yield a final graph as in [15], we consider only the visibility
between pairs of time series intensities per dimension. In
particular, consider a multidimensional time series {t(d)i }Ni=1

with d=1,..,D being the number of dimensions. A planar
mdHVG-AND graph with a set of edges E, is constructed
based on the following rule

• Two nodes ni and nj share an edge eij ∈ E in the
mdHVG-AND graph when for each intermediate time
instance, tk, ti < tk < tj ,

E = {eij | s(t(d)k ) < min{s(t(d)i ), s(t
(d)
j )},∀d, d = 1, .., D}

The mdVG-AND graph shares the same principle where
in this case the rule is based on Eq.1.

Similarly, a mdHVG-OR graph with a set of edges E, can be
derived when the following rule is satisfied

• Two nodes ni and nj share an edge eij ∈ E in
the mdHVG-OR graph when for each intermediate time
instance, tk, ti < tk < tj ,

E = {eij | ∃d, s(t(d)k ) < min{s(t(d)i ), s(t
(d)
j )}, d = 1, .., D}

The mdVG-OR graph shares the same principle where
the rule is based on Eq.1.

An example of the proposed frameworks is presented in Fig. 2.
The VG and HVG algorithm implementation in this work

is based on the fast code versions of Iacobello et al. [16].
Comparing the AND and OR-based architectures in terms
of computational efficiency, the AND-based approach outper-
forms the OR-based since once the visibility rule is not met
in at least one dimension d for a pair of nodes, the algorithm
immediately considers that no edge is shared between them
and proceeds to the next pair of nodes, whereas in the case
of the AND-based scheme the procedure continues for all the
remaining dimensions.

IV. PERFORMANCE EVALUATION

This section describes in detail the dataset employed, the
data pre-processing as well as the classification procedure.
Every proposed framework is implemented in MATLAB, on a
desktop computer equipped with a CPU processor (Intel Core
i7-7700) clocked at 2.8GHz, and a 8 GB RAM.

A. Dataset description

This work employs the 25PDB dataset [17] that includes
1673 proteins of varying length with 25% sequence homology.
The proteins are categorised based on their structural class
with 443 of them belonging to α-fold, 443 to β-fold, 346

1218



FDA
VG mdVG-AND mdVG-OR HVG mdHVG-AND mdHVG-OR

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
α 80.22% 94.59% 79.14% 98.19% 76.81% 96.67% 82.21% 97.13% 83.59% 97.25% 78.16% 96.47%
β 79.86% 93.02% 69.57% 98.60% 74.01% 93.01% 72.57% 90.66% 69.63% 97.60% 76.37% 96.21%
α/β 66.55% 96.08% 61.40% 94.76% 64.14% 94.36% 67.22% 94.59% 69.58% 95.40% 63.98% 92.67%
α+ β 67.96% 81.37% 84.56% 74.04% 70.35% 78.01% 64.51% 79.86% 80.82% 77.86% 71.58% 78.57%

OA 87.03% 87.18% 85.87% 85.95% 88.13% 86.51%

SVM
VG mdVG-AND mdVG-OR HVG mdHVG-AND mdHVG-OR

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
α 83.79% 94.28% 87.01% 96.52% 80.95% 96.10% 81.21% 96.08% 85.99% 95.85% 89.43% 93.98%
β 80.21% 92.72% 75.25% 97.44% 74.83% 93.86% 73.84% 89.33% 75.03% 96.03% 77.65% 95.91%
α/β 67% 94.65% 66.10% 94.62% 62.27% 95.02% 66% 92.49% 65.72% 94.59% 63.60% 94.55%
α+ β 64.67% 83.89% 77.91% 80.82% 72.65% 79.11% 57.35% 81.67% 73.80% 80.90% 68.97% 82.79%

OA 87.16% 88.59% 86.64% 84.91% 87.84% 87.79%

TABLE I: Performance evaluation of VG, mdVG-AND, mdVG-OR, HVG, mdHVG-AND and mdHVG-OR with SVM and
FDA classifiers. The highest achieved accuracy for SVM and FDA per experiment is highlighted and indicated in bold.

to α/β-fold and 441 to α + β-fold. Instead of dealing with
the protein primary structure the PSI-PRED tool [13] is
utilized to predict the role of each amino acid in the protein
secondary structure. Particularly, PSI-PRED transforms the
initial amino acid sequence to a sequence of equal length that
now consists of only three states that describe its secondary
structure, namely coils (C), strands (E) and helices (H). This
simplification not only reduces the dimensionality of our data
from 20 amino acids to three structural elements but also
the overall computational complexity. Thereafter, in order to
transform a unidimensional sequence of secondary structural
elements into a two-dimensional time series, CGR is employed
that yield a two-dimensional time series [8]–[12].

B. Classification
In previous studies [6]–[9], [12], the leave-one-out cross-

validation process is employed for the specific classification
problem. However, based on our experiments, a 10-fold-cross-
validation yields approximately the same overall accuracy
in considerably less time. Therefore, in this work the data
are randomly split into 10-folds for training and testing
and the procedure is repeated 100 times. In more detail,
the feature matrix is initially z-score normalized and then,
the performance of each architecture is evaluated by two
well known classifiers independently. Particularly, a Gaussian-
kernel Support Vector Machine (SVM) as well as Fisher’s
Linear Discriminant Analysis (FDA) are applied separately on
the normalized feature matrix for discriminating between the
four secondary structural classes α-fold, β-fold, α/β-fold and
α+β-fold. For the Gaussian SVM classifier, the regularization
parameter C and kernel width parameter γ can take all positive
values log-scaled in the range [10−3, 103].

V. EXPERIMENTAL RESULTS

The performance of the proposed VG, HVG, mdVG-AND,
mdVG-OR, mdHVG-AND and mdHVG-OR frameworks is
evaluated in terms of sensitivity, specificity and Overall Ac-
curacy (OA) for SVM and FDA, respectively. As depicted

in Table I, proteins that belong to the α-fold and β-fold
class are better predicted in most case studies for both SVM
and FDA classifiers, whereas the α/β-fold proteins meets the
lowest prediction accuracy since it is difficult to differentiate
them from the others. Furthermore, it is demonstrated that the
original VG approach outperforms HVG for both SVM and
FDA classifiers. Following that, based on the bar figure in
Table II we observe that in the instance of mdVG-AND with
SVM classifier the overall accuracy increases significantly, as
opposed to the mdVG-OR scheme, where the performance
drops for both classifiers. In terms of the mdHVG-AND
framework, it is given that the FDA classifier achieves better
results compared to both SVM classifier as well as the
remaining approaches. On the other side, the mdHVG-OR
scheme outperforms the HVG algorithm, yet not as well as
the mdHVG-AND architecture. Overall, the most efficient
framework in terms of classification accuracy is the mdVG-
AND with SVM classifier. In this vein, it is worth noting
that, in general, AND-based schemes outperform all the other
schemes (original VG, original HVG and OR-based) in terms
of classification performance. This tendency may be explained
by the fact that, unlike the other techniques, AND-based
architectures exploit both intra- and inter-data correlations
between all the different dimensions of the time series.

The summarized predicted results for the 25PDB dataset
are given in Table II. It is important to note that the pro-
vided Computational Complexity (CC) is decoupled from the
classification procedure. As previously stated, by constructing
the VG or HVG network, a protein is represented as a real-
valued vector with 17 characteristics, whereas for the cases of
mdVG-AND, mdVG-OR, mdHVG-AND and mdHVG-OR the
protein is characterized by a real-valued vector of 9 features
in total. As indicated, the herein proposed multidimensional
architectures achieve similar or even higher classification
accuracy while extracting the minimum number of features
which in turn not only reduces the memory complexity of the
system but the computational complexity as well. Moreover,
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VG mdVG-AND mdVG-OR HVG mdHVG-AND mdHVG-OR
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SVM FDA

Number of Overall Accuracy CC
Features SVM FDA (minutes)

VG 17 87.16% 87.03% 1.45
mdVG-AND 9 88.59% 87.18% 0.77
mdVG-OR 9 86.64% 85.87% 1.08

HVG 17 85.95% 84.91% 1.17
mdHVG-AND 9 87.84% 88.13% 0.70
mdHVG-OR 9 87.79% 86.51% 1.46

TABLE II: Summarized predicted results for the 25PDB dataset. The overall accuracy for SVM and FDA classifiers is presented
in the bar figure. The highest achieved accuracy for SVM and FDA per experiment is indicated in bold on the respective table,
and the most efficient architecture in terms of classification accuracy and computational complexity (CC) considering only the
feature extraction procedure is highlighted in blue.

it is clear that SVM classifier outperforms FDA classifier in
most cases with the highest overall accuracy (88.59%) being
achieved with the mdVG-AND scheme that requires only
0.77 minutes to extract 1673×9 features. Nevertheless, SVM
is a computationally expensive classifier that, as opposed to
FDA, it demands hyperparemeter tuning. In particular, SVM
requires approximately 3.24 min to perform a 10-fold-cross
validation of 1673 samples, whereas FDA is executed for the
same setup in approximately 0.17 minutes. Therefore, FDA is
considered as a more efficient classifier in terms of computa-
tional complexity. In this regard, the mdHVG-AND framework
with FDA achieves an insignificantly lower overall accuracy
(88.13%) when compared to the best performing scheme,
namely the mdVG-AND scheme with SVM (88.59%), but
yet in importantly lower total computational cost when both
the feature extraction and classification procedures are taken
into account (4.01 minutes vs 0.87 minutes, respectively).
Therefore, the mdHVG-AND architecture with FDA classifier
is considered as the optimal to be employed for classifying
protein secondary structures.

VI. CONCLUSIONS AND FUTURE WORK

This work designs and implements four efficient and novel
approaches, namely mdVG-AND,mdVG-OR, mdHVG-AND
and mdHVG-OR, for transforming a multidimensional time
series into a unique planar graph based on the VG and
HVG algorithms. Each of the four frameworks is simple to
implement, general, scalable, and suitable for the analysis of
large, heterogeneous and non-stationary time series. The study
on real protein data revealed the superiority of the mdHVG-
AND scheme combined with an FDA classifier, as compared to
the state-of-the-art in terms of overall classification accuracy,
feature multitude and running time complexity. The proposed
scheme can be viewed as an efficient protein secondary
structure classification architecture.

An extension of this work will consider a deep learning
framework for protein structure classification based on the
graph representation of the proteins resulted with the utiliza-
tion of the herein proposed mdHVG-AND algorithm.
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