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Abstract—In this work, we propose a CNN-based approach
for classification of short duration EEG signals for visual brain
decoding. These signals are captured for a visual perception
task by showing digit images on a computer screen, and the
task involves classification of the EEG signals into 10 classes,
corresponding to the digits shown. The captured EEG signals
are of very short duration (approx. 2sec), which are typically
very noisy. We use a correlation based technique for the removal
of highly noisy samples. Further, a sample refinement approach
for the selection of relevant channels is also proposed. Both
these steps constitute the data refinement process, which we
demonstrate has a significant effect on the CNN classification
performance. We validate the proposed approach on a publicly
available MindBigData (The ”MNIST” of Brain Digits) dataset.

Index Terms—CNN, Correlation coefficients, EEG Classifica-
tion, visual brain decoding

I. INTRODUCTION

Brain decoding is based on the premise that the brain
activity as measured by devices such as Functional Magnetic
Resonance Imaging (fMRI), Electroencephalography (EEG),
Magnetoencephalography (MEG) etc. can contain signatures
of underlying neural processes or mental states corresponding
to different emotions, intentions to perform a task (e.g. in
case of motor imagery), attention, eye movements, decision
making in certain task, mental load, stress etc. With progress
in brain computer interfaces and machine learning or deep
learning techniques, encouraging attempts are being reported
to draw inferences about such mental states based on external
measurements of electrical activity (via EEG) or magnetic
fields and their effects (via fMRI, MEG).

Among the above methods for measuring neuronal signals,
EEG which is the most common one due to some advantages
such as high temporal resolution and relatively low cost.
While, traditionally an important application of EEG was in
the clinical setting for seizure detection and analysis [1], its
uses have flourished in various cognitive science applications
involving brain decoding and brain computer interfaces.

A relatively new sub-domain, which can be termed as per-
ceptual brain decoding (PBD), involves identifying an external
perceptual (e.g. visual, audio) stimulus, using the responses
from brain (evoked by such stimuli). Perceptual brain decoding
has benefits from both the cognitive and clinical perspectives.

Recent research in the PBD have shown some motivating
outcomes [2], [3] that indicate the presence of the discrimina-

tive information in the brain recordings corresponding to the
visual perception task. Despite the above motivating results,
PBD is still considered as a challenging task. There are few
factors which may play a crucial role in a brain decoding
task, e.g., the recording time of EEG signals and the quality
of captured EEG samples. Considering that the task of PBD
is relatively new, there is little clarity about aspects such as
sufficient time to observe and imagine an image, and the
corresponding time to capture EEG signals. While there have
been some encouraging attempts for classification of long
duration (about 10s per instance) EEG signals evoked by
visual inputs [4], a similar classification for short duration
EEG signals needs more exploration. In order to explore this
direction we are focusing on short duration (2s per instance)
EEG signals, which we believe can be noisier, and may need
refinement. The author in [5] focus on the requirement of
good quality EEG samples for any human cognition task. The
authors also compare the signal quality of different devices
used for recording brain activities.

Thus, in this work, we consider a classification task for
EEG signals, where the classes correspond to stimuli evoked
by images of ten different digits (from 0-9)1. Our contribu-
tions are as follows: 1) Considering the requirement of good
quality EEG samples for short duration EEG signals, in this
work we first propose an approach to select, arguably, more
discriminative EEG channels, followed by the selection of
good quality EEG signals from these channels. 2) The above
process amounts to an automatic refining of the EEG data,
and we demonstrate that the refined dataset yields significantly
better classification results than using the unrefined data. To
support the classification performance, we provide a t-SNE
visualization (a method of visualizing a high-dimensional data
in a low-dimensional space [6]) of the discrimination across
the classes before and after the refinement. 3) In addition to
the data refinement approach, we also propose a novel 1D
CNN based classification method, which involves convolutions
across time and channel samples.

The rest of the paper is organized as follows. In section
2, we discuss recent works related EEG classification (for
both medical as well as perceptual decoding). In section 3, we
provide the details of the dataset which is publicly available.

1http://www.mindbigdata.com/opendb
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Section 4 deals with our approach for filtering, removal of
noisy samples and channel selection followed by classification
on refined EEG data.

II. RELATED WORK

A large fraction of literature on EEG classification is
focused on clinical applications such as seizure detection [1],
[7]. However, apart from these, there are various other appli-
cation domains involving EEG based analysis such as event-
related potential detection for an EEG based image annotation
system [8], mental workload of a person [9], emotion classi-
fication [10], [11], sleep cycle information extraction [12],
and motor imagery task classification [13] etc. The authors
in [14] review the significant current approaches for EEG
classification using deep learning approaches.

Schirrmeister et al. [15] study distinct CNNs architectures
specifically designed for decoding of imagined stimulus from
EEG signals. The work also highlights the potential of CNNs
for the brain decoding task. Bashivan et al. [16] present a novel
approach to learn effective representations of EEG signals
from raw EEG data with the help of topology-preserving
multi-spectral images and LSTM based features. Some of the
recent research also includes analyzing brain activity of a
person performing a visual task [3], [17]. However, a very
limited number of methods have been developed [18], [19] to
address the problem of decoding the EEG signals associated
with the task of visual perception.

Tirupattur et al. [4] proposed a deep learning network for the
classification of long duration EEG signals while performing
a visual perception task on ThoughtViz dataset [4]. In a recent
work the authors [20] proposed an LSTM based deep learning
network for the task of EEG classification based on digits
based visual stimuli on a short duration dataset from the same
source (MindBigData) that we have used in this work. Another
method on the same dataset involving a GRU based deep
network has been proposed by the authors of [21]. As such
the MindBigData is recorded using 4 devices, from which the
authors of both of the above works have used EEG signals
from a 4 channel MUSE device (details is in the subsequent
section). However, the classification accuracy for these works
is in the range of 11% to 30%. On the other hand, in this
work, while we also work with the MindBigData, as indicated
in the next section, we have chosen to use the EEG signal
captured with the Emotiv Epoc device which has 14 channels,
considering that there is a large scope of improvement of the
classification performance on this dataset.

III. MindBigData - MNIST OF BRAIN DIGITS

MindBigdata2 is a publicly available dataset for perceptual
brain decoding. This dataset is a collection of EEG signals
which are obtained by exposing a subject to a visual stimuli
of numerical digits (as shown in Fig. 2) multiple times. The
image appears on the screen and the subject is asked to
imagine the appeared digit for 2 seconds. The EEG signals

2http://www.mindbigdata.com/opendb

is captured for this imagined time. This dataset is prepared by
capturing EEG signals using four commercial EEG devices.
These, along with their channel information are as follows:

Fig. 1. Electrode locations in Emotiv Epoc (reproduced from [22])

Fig. 2. Samples of MNIST based visual stimuli [23]

• NeuroSky MindWave ( “FP1”)
• Emotiv EPOC (“AF3”, “F7”, “F3”, “FC5”, “T7”, “P7”,

“O1”, “O2”, “P8”, “T8”, “FC6”, “F4”, “F8”, “AF4”)
• Interaxon Muse (“TP9”, “FP1”, “FP2”, “TP10”)
• Emotiv Insight (“AF3”, “AF4”, “T7”, “T8”, “PZ”)
(All locations are w.r.t. the standard (10/20) locations.)
It may be noted that the parietal lobe of human brain is

mainly responsible for the functions like perception, object
classification, knowledge of numbers etc [24]. Therefore we
are using Emotive Epoc device data for digit classification
task as electrodes locations (“P7”, “P8”) of parietal lobe is
available only in it. This device uses 14 electrode as shown in
Fig. 1 with a sampling rate of 128 Hz. To our knowledge, this
is the only publicly available dataset for digit classification
using short duration EEG signals, captured with this device.

IV. THE PROPOSED APPROACH

Broadly, there are two primary components in our work.
• Data refinement
• EEG classification

A. Data Refinement

The data refinement is an important aspect in this work,
which we demonstrate, is responsible for a significant im-
provement in the classification performance. Below we discuss
the steps in this process.

1) Filtering: We follow the standard filtering paradigm by
removing the DC (0 Hz frequency) component from the data.
Further, an additional band-pass filter (3 Hz to 30 Hz) is
applied to extract the relevant EEG bands (Theta band, alpha
band and beta band).
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2) Removal of Noisy Samples: Since the EEG signals are
highly prone to noise, the first step after filtering is to remove
the noisy channels. Let X = {X0, ..., Xi, ..., X9} denote the
total training EEG data where Xi = {Xi

1, .., X
i
j , ..., X

i
14}

denotes the EEG data corresponding to ith digit (i ∈ {0 to 9}).
Xi

j ∈ Rd×nj is the ith digit data corresponding to jth channel,
where d and nj denote the signal length and number of signals,
respectively.

We make use of event-related potential (ERP) signal to
remove the very noisy samples, which may not contribute for
classification. An ERP signal is the measured brain response
that is the direct result of a specific sensory, cognitive, or motor
event [25]. ERPs are measured by taking the means of EEG
signals as

µi
j =

1

nj
[Xi

j1], (1)

where µi
j ∈ Rd denotes the mean of Xi

j , and 1 denotes a
column vector of all-ones of length nj .

We then measure the correlation coefficient between each
signal x, i.e., columns of Xi

j , and ERP signal µi
j as

z =
d(
∑
xµi

j)− (
∑
x)(

∑
µi
j)√

[d(
∑
x2)− (

∑
x)2][d(

∑
µi
j
2)− (

∑
µi
j)

2
]

(2)

The value of correlation coefficient is in between -1 to +1.
If the value of the correlation coefficient is high, that means
the signal x is closer to the ERP signal and can be considered
as less noisy. We select only those signals that are having a
correlation coefficient greater than a certain threshold.

3) Selection of relevant EEG channels: Since all the elec-
trode channels are not contributing significantly to the PBD
task, selection of discriminative channels is necessary. In
order to find out the discriminative channels, we follow an
approximate greedy strategy. More specifically, we perform a
binary classification task for each channel data independently.
The data obtained after filtering using correlation coefficient
is used for one-vs-one digit classification for each of the
channels. In total, there are 45 such pairs for binary digit
classification. For each channel, the average EEG classification
accuracy for all the possible pairs of digits for all the channels
are listed in the given Table I.
It is clear from this Table I that channel no. 5 (T7), 6 (P7), 9
(P8) and 10 (T7) carries more discriminative information than
the other remaining channels. It is in accordance with our
expectations as channel no. 6 and 9 represent the electrode
locations of parietal lobes and results in meaningful EEG
representation for this particular task. So, for further analysis,
we consider only these 4 channels. Thus, after this step, the
actual data has only 4 channels instead of 14. Interestingly, the
earlier works which use the data from the MUSE device also
work with 4 channels. However, the important difference is
that in our case, the 4 channels are selected automatically from
the original 14 channels, based on their potential importance
to the classification task, and significantly contribute towards
the same.

TABLE I
AVERAGE CLASSIFICATION ACCURACY OF BINARY DIGIT CLASSIFICATION

USING K-NN FOR ALL ELECTRODE CHANNELS

Channel No Average Classification Acc.
CH 1 0.5212
CH 2 0.545
CH 3 0.521
CH 4 0.528
CH 5 0.641
CH 6 0.634
CH 7 0.525
CH 8 0.549
CH 9 0.64

CH 10 0.566
CH 11 0.536
CH 12 0.527
CH 13 0.537
CH 14 0.5152

4) Channel Interpolation: Due to the removal of noisy
samples, it is quite possible that some signals from some
samples corresponding to these 4 channels may be removed.
Therefore we introduce the notion of channel interpolation by
interpolating the missing sample data of a particular channel.
Considering the presence of the noisy samples in the dataset,
we have chosen only those samples which have at least 3
signals with a correlation coefficient greater than a certain
threshold. The channel interpolation can be described as
below:

• Find out the channel with signal having low correlation
(less than a certain threshold) from the training sample
of a class.

• Interchange this less correlated channel signal with a high
correlated signal from the same channel of other sample
of the same class.

B. EEG Classification

For classification of EEG signals we have used convolution
neural networks. The motivation for using CNN comes from
the ability of CNN to learn contextual information of the
data. In this work it is important to capture the context
information in two direction (across time axis as well as across
channel axis). Thus, we have used 1-D CNN across time
followed by 1-D CNN across channels. This configuration
of CNN architecture enables us to capture the neighbouring
information in the two required directions.

1) CNN Network: The details of base deep learning model
is given below:

The input data is of the dimension (4 x 249) (i.e. 4 channels
and 249 samples)

• Application of 1D CNN on each channel axis to capture
neighbouring information across the time axis

• Application of 1D CNN on channel axis to consider
neighbourhood information across channel axis.

• Application of maxpool layer to provide robustness
against intra-class variation.

• Application of 1D CNN on time axis
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• Fully connected dense layers followed by an output layer
with softmax activation.

The numbers of convolution filters for each block are 32,
25 and 32 respectively. The fully connected layers connected
layers have 128, 64 and 32 neurons. The final softmax layer
is of the size equal to the number of classes. ReLU activation
has been used after each of the internal layers. We train the
classifiers with Adam optimizer with a batch size of 100 and
learning rate of 1e-4. The network was trained from scratch.

V. EXPERIMENT & RESULTS

Here, we provide the results of our experiments with the
MindBigData dataset using the proposed 1-D CNN based
deep network. The ratio of training and test data is roughly
90:10. More specifically, for each class the training partition
consists of EEG data corresponding to trials involving 90%
of the images displayed, while in test data we have EEG
data corresponding to trials involving the remaining (10%)
set of images. In the subsections below, we discuss the results
considering different components of our approach.

A. Results showing the effect of the removal of noisy samples,
and discriminative channel selection

The comparison of classification accuracy for cases without
removal of noisy samples, and without channel selection is
shown in table II. For the experiments without channel selec-
tion, we have used a similar network for all the classification
tasks except that the size of 1-D CNN on channel axis is
14x1. For the case of 14 channel classification with data
refinement, we have chosen all those samples in which at-
least 10 signals have a correlation coefficient value greater
than a certain threshold. Column three shows the results for
the case with selection of 4 channels but choosing random
samples equal to the amount of data that is chosen based on
our threshold strategy. This comparison shows that refinement
strategy (selection of good EEG samples) helps to significantly
improve the performance even on 14-channels (Col 1 vs Col
2). While only a reduction of channel without the correlation
based selection does not yield much gains (Col 1 vs Col 3),
reducing the channels further on this cleaner, as a part of our
overall process, again improves the results considerably (Col
2 vs Col 4).

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY (%) WITHOUT REMOVAL OF

NOISY SAMPLES & WITHOUT CHANNEL SELECTION

EEG
data for

14 channels
without

removing
noisy samples

Data
refinement

with
14 channels

(z>0.1)

Random
selection

of samples
for 4 channels

(Without )
(noise removal)

Refined
with

4 channels
and

interpolation
(z>0.1)

11.5 32.4 13.9 57.3

B. Results for different values of correlation coefficient, and
the effect of interpolation

The comparison of classification accuracy with different
values of correlation constant is given in table III. We provide
the results with the interpolation of channels and without
interpolation of channels in training data. The results are
showing that as we increase the value of correlation coefficient
for sample refinement, the classification accuracy is increasing.
These results validate our approach that selection of good
quality samples (removal of noisy samples), using even conser-
vative correlation values, along with the channel interpolation
in training data, helps in providing a good classification
performance..

TABLE III
CLASSIFICATION FOR DIFFERENT VALUES OF CORRELATION COEFFICIENT

THRESHOLD, AND EFFECT OF INTERPOLATION

Correlation
Threshold(z)

Classification
Accuracy(%)

without Interpolation

Classification
Accuracy(%)

with Interpolation
z>0.1 48.2 57.3

z>0.15 51.5 60.5
z>0.2 55 70.1

The detailed confusion matrix for z>0.2 is given below in
Fig. 3. From the figure it is clear that the individual category
classification accuracy for all digits are consistent except for
some drop in a couple of classes. The reason for this may be
due to the similarity in the digits with other category (like the
similarity between 1 and 7 and in between 4 and 9).

Fig. 3. Confusion matrix for all classes (z >0.2)

C. Visualization of seperability using t-SNE representation

In figure 4 we show the t-SNE plots of the train and test
data. t-Distributed Stochastic Neighbor (t-SNE) Embedding is
a non-linear dimensionality reduction technique used for visu-
alizing high-dimensional data in a low dimensional space [26].
It is clear that the raw data is highly overlapped (both in case of
training data (a) and testing data (c)). We then show the t-SNE
of the samples after training on the refined data (with z>0.2
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Fig. 4. Visualization of training and test data using t-Stochastic Neighbor Embedding

and with interpolation), for which we obtained the embeddings
of the train and test data from the last layer of our network
(before softmax output layer). The plot of t-SNE of these data
embeddings is given in Fig. 4 (c) and (d) which clearly shows
the discrimination in the train & test data embedding.

VI. CONCLUSION

In this work we have proposed a correlation based approach
for the EEG data refinement, in a visual brain decoding
task, involving classification of visually evoked EEG signals.
We believe that the extremely noisy samples can deteriorate
the performance of any EEG based classification and hence
removal of such noisy samples should be the first step for any
EEG based PBD task. After data refinement we have proposed
a 1-D CNN based deep learning network for classification.
The proposed approach is showing promising classification
performance of around 70% on MindBig data, and the effect
of data refinement on the separability of the classes is also
convincingly visualized via t-SNE representation.
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