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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) is a non-
invasive technique for studying brain activity. During an
fMRI session, the subject executes a set of tasks (task-related
fMRI study) or no tasks (resting-state fMRI), and a sequence
of 3-D brain images is obtained for further analysis. In the
course of fMRI, some sources of activation are caused by
noise and artifacts. The removal of these sources is essential
before the analysis of the brain activations. Deep Neural
Network (DNN) architectures can be used for denoising and
artifact removal. The main advantage of DNN models is the
automatic learning of abstract and meaningful features, given
the raw data. This work presents advanced DNN architec-
tures for noise and artifact classification, using both spatial
and temporal information in resting-state fMRI sessions. The
highest performance is achieved by a voting schema using
information from all the domains, with an average accuracy
of over 98% and a very good balance between the metrics of
sensitivity and specificity (98.5% and 97.5% respectively).

Index Terms— Resting-state fMRI, Independent Compo-
nent Analysis, Denoising, Deep Neural Networks

1. INTRODUCTION

Currently, one of the most widely used techniques for study-
ing and analyzing brain connectivity and activity is fMRI.
During an fMRI experiment, random noise and artifacts are
introduced (e.g. heartbeat, head motion, thermal noise, etc).
Moreover, the noise can be related to the specific hardware
and the nature of the experiment. A successful and substantial
analysis of the fMRI session requires high quality, noise-free
data. Hence, the robust denoising and artifact removal is a
crucial step of the fMRI processing [1]. This task is challeng-
ing because some types of noise are difficult to be detected
due to the fact that they are very rare or quite similar to regu-
lar components [2].

Blind Source Separation (BSS) [3] is a very important
step for interpreting and analyzing the fMRI data. The local-
ization of the activated brain areas is a challenging BSS task,
in which the sources consist of a combination of spatial maps
(areas activated) and time-courses (timings of activation) [4].
The sources should be classified, for clean-up purposes, as

artifacts or neuronal signals. Both temporal and spatial in-
formation is used to categorize the source as noise/artifact or
neuronal signal, the sources classified as artifacts are removed
during the reconstruction of the signal. Independent Compo-
nent Analysis (ICA) [5] is a statistical method which tries to
find a linear transformation of the observable space into a new
space such that the individual new variables are mutually in-
dependent. ICA is a powerful technique for separating the
various source of fluctuations and, ICA assumes that statis-
tically independent spatial maps are mixed with the use of
corresponding time-courses in an associated (mixing) matrix.

The most widely used Machine Learning based ap-
proach for artifact removal is FIX (”FMRIB’s ICA-based
X-noiseifier”) [6], [7]. It is an ICA-based framework using
FastICA algorithm (as implemented in Melodic toolbox [8]).
Principal Component Analysis (PCA) [9] is applied as a pre-
processing step, for dimensionality reduction and reduction
of unstructured noise. The features (over 180) are manually
engineered in order to capture aspects of spatial maps (e.g.
size of the clusters and voxels overlaying bright/dark raw
data voxels) time series, and frequency spectrum (e.g. autore-
gressive and distributional properties, jump amplitudes). The
hand-crafted features are sensitive to the acquisition and pre-
processing parameters. Hence, the re-training of the model is
essential when the data differ a lot from the initial data, which
were used for the training of the models. Finally, multiple
different classifiers are stacked in order to extract the final
decision.

In the view of the DNN success in various biomedical
problems [10], [11], a Deep Learning [12] framework is pro-
posed for automatic noise and artifact detection in resting
state fMRI data [13], which exhibits good performance. The
dataset of the study is taken from Baby Connectome Project
(BCP [14]) and contains resting state sessions from 32 sub-
jects/infants. ICA is applied on the data and 150 components
per subject are extracted. Trained raters decided whether a
component is related to noise or a nuisance signal. Normal-
ization (standardization) is applied on each extracted 3D spa-
tial map. The proposed framework contains a 3D Convolution
Neural Network (CNN) [15] model which receives the spatial
maps as input and extracts meaningful spatial features. The
temporal information is analyzed by a 1D CNN model, which
learns high-level temporal representations. For each convolu-
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tional layer, ReLU is used as activation function. Finally, a
stack of fully connected layers is added in each model, in or-
der to perform the classification of the component (signal or
noise/artifact). A majority voting schema is also applied for
the final classification.

In this study, advanced Deep Learning architectures are
used for denoising and artifact removal. Having as starting
point the proposed models of [13], we want to explore the ef-
fectiveness of more complex architectures and the addition of
frequency information as input. The labeled extracted compo-
nents are used for training and evaluation of the Deep Learn-
ing models. After necessary data-preprocessing and manip-
ulation, the training and testing of the different DNN mod-
els are executed. The performance is tested, using the spa-
tial, temporal, and frequency information independently and
jointly. The main outcome of the study is twofold; spectral
information boosts the overall performance and a weighted
voting schema achieves the best results.

2. DEEP LEARNING METHODS

The proposed DNN models can be separated based on the
given input (spatial, temporal, and frequency). The main layer
of the models using 3D spatial maps as input is the convo-
lutional layer, which is capable of extracting high-level fea-
ture representations taking into account the local connectivity
between the elements of the input. We employ models us-
ing both temporal and frequency information in order to test
whether the assumption used in [13], that a neural network
using temporal information can infer all the meaningful fre-
quency features, is valid, and whether we can improve the
total performance.

2.1. Models using spatial information

The first model (CNNsm1
, Fig. 1) is similar to the one pro-

posed in [13] and is considered as the baseline model. The
main difference is that the stride of every convolution oper-
ation is set to 1, while in [13] stride values of 2 and 3 are
used. The second model (CNNsm2

, Fig. 2) has a slight dif-
ference with the first one. Batch Normalization (BN) [16]
layers are used after each convolutional layer. A BN layer
[17], [18] helps the network to get trained in a smoother and
faster way, decreases the sensitivity to the weight initializa-
tion step, and can be used as a type of regularization. Hence,
the second model tests whether the addition of the BN layers
is advantageous in our task. The third model (CNNsm3

, Fig.
3) includes the idea of residual blocks. This type of block
is initially proposed in ResNet architecture [19] and contains
skip connections, which help the network to learn additional
residual features. Learning residual features boosts the per-
formance in many computer vision tasks [19], [20]. Hence,
we want to investigate whether the residual blocks are effi-
cient in our study. ReLU is used as the activation function in
all of the layers (3D convolutional and fully connected layers)
of the proposed models. Only the last output layer uses the
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Fig. 5: CNN − LSTMtm2 and CNN − LSTMps2 models

Sigmoid activation function in order to extract the final prob-
ability (1: perfect noise, 0: pure signal).

2.2. Models using temporal and frequency information

The architectures of the proposed models using temporal
and frequency information are identical. The first model
(CNNtm1

, CNNps1 , Fig. 4), which is used as baseline
model, employs a sequence of 1D convolutional and max
pooling layers. It is similar to the model proposed in [13].
The second model (CNN−LSTMtm2

, CNN−LSTMps2 ,
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Fig. 5) introduces a parallel architecture, which also includes
an LSTM block [21], followed by a dropout layer. The usage
of LSTM block [22], [23] provides the capability of learning
long-term time-dependent patterns. The dropout layer is used
for regularization in order to avoid overfitting.

3. RESULTS

The dataset consists of high-resolution 3T resting-state fMRI
data of young (age: 22-35) healthy adults from WU-Minn
Human Connectome Project [24], [25]. The total number of
subjects is 394 with two or four fMRI sessions each. The data
is preprocessed with MELODIC ICA-FIX [6], [7] pipeline.
ICA is applied per subject and the number of components
(range: 59-250, mean: 96) is calculated based on Bayesian
dimensionality estimation techniques and maximum likeli-
hood. The total number of independent components is around
134,000. The extracted components include a label (used as
ground truth) that indicates whether the component is related
to noise/artifact or neuronal signal. The labels are provided
by trained raters/experts after cross-checking and correcting
(when needed) the results of MELODIC ICA-FIX pipeline.

The first step of the experimental process is the separation
of the three different subsets of the dataset: training, valida-
tion, and test set. Taking into account the computational cost
of the training of the models, 80 subjects are included in the
training set and 20 subjects in the validation set. In the train-
ing set, a random sampling is performed for each different
split (5-fold cross-validation technique) in order to balance
the classes and handle the imbalance problem, as the class
which contains the noisy components is dominant. The re-
maining 294 subjects are used as test set. Hence, as the num-
ber of subjects in the test set is large, the evaluation process
indicates robustly the generalization capabilities of the mod-
els.

As 5-fold cross-validation is used, the models are trained
five times. For all the models, Adam [26] is used as opti-
mizer with learning rate equal to 0.001. For the models using
spatial information (CNNsm1

, CNNsm2
, and CNNsm3

) the
batch size is set to 16 and early stopping is applied after 3
epochs, when no performance improvement is achieved in the
validation set. For the models using temporal and frequency
information (CNNtm1

, CNN − LSTMtm2
, CNNps1 , and

CNN − LSTMps2 ) the batch size is set to 128 and early
stopping is applied after 4 epochs.

Other than training the different models separately, we
also train four combinations of them with the addition of a
concatenation layer and two fully connected layers with 128
and 32 neurons, in order to check for a possible increment in
the performance. The tested combinations are the following:

• Comb1: CNNsm1 , CNNtm1 and CNNps1

• Comb2: CNNtm1 and CNNps1

• Comb3: CNNsm1
and CNNtm1

• Comb4: CNN −LSTMtm2
and CNN −LSTMps2 .
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Fig. 6: Evaluation of CNNsm1 , CNNsm2 , and CNNsm3 models
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Fig. 8: Evaluation of CNNps1 and CNN − LSTMps2 models

Model ACC SEN PREC SPEC
Comb1 95.66 96 98.59 94.29
Comb2 95.62 95.69 98.85 95.37
Comb3 95.77 96.48 98.26 92.83
Comb4 96.27 96.9 98.46 94.67

Table 1: Evaluation of the combined models - Average metrics (%)

The final step of the experimental procedure is the eval-
uation phase. All the trained models are evaluated in the
same test set. Accuracy, precision, sensitivity, and specificity
are calculated. The final predictions are extracted separately
from each trained model, however different voting schemes
using the extracted probabilities are also applied. The mod-
els are tested using 294 subjects (test set). For each split
(5-fold cross-validation) the four performance metrics (accu-
racy: ACC, precision: PREC, sensitivity: SEN, and speci-
ficity: SPEC) are calculated. Moreover, a voting schema for
the final decision is applied in order to evaluate whether com-
binations of the distinct models result in better performance.
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A general description of the weighted voting schemes
with n different models is the following:

Probout = w1Prob1 + ...+ wnProbn,
∑n

i=1 wi = 1, (1)

where wi and Probi are the voting weight and the extracted
probability of the ith model, respectively. If Probout > 0.5
(threshold) then the component is considered classified as an
artifact, else it is classified as a neuronal signal. Both the
time and frequency information are derived from the same
data (time courses of the mixing matrix), hence, we selected
the weights in order to balance the contribution of the spatial
maps and time courses in the decision function. The evaluated
voting schemes (inside the parentheses are the corresponding
voting weights) are the following:

• Schema1: CNNsm1 (0.5), CNNtm1 (0.25), and
CNNps1 (0.25)

• Schema2: CNNsm1
(0.5), CNN−LSTMtm2

(0.25),
and CNN − LSTMps2 (0.25)

• Schema3: CNNsm2
(0.5), CNN−LSTMtm2

(0.25),
and CNN − LSTMps2 (0.25)

• Schema4: CNN − LSTMtm2 (0.5), and CNN −
LSTMps2 (0.5)
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Fig. 9: Evaluation of the voting schemes - Average metrics

Statistical validation of the findings is performed, a 5-
fold validation paired t-test is applied using the accuracy as
the performance metric for each distinct fold. The signifi-
cance level is set to 0.05. Figure 6 indicates that the perfor-
mance of the three different models using spatial information
is very similar. The accuracy is over 98%, so the possible
improvement is limited. The addition of the residual blocks
(CNNsm3

model) increases the complexity of the model, but
the performance does not improve significantly. Moreover,
BN layers which are included in CNNsm2

model do not af-
fect the performance.

The models using temporal information (CNNtm1
and

CNN − LSTMtm2 ) perform worse than those using spatial
information as the accuracy decreases approximately by 3%.
The high resolution of the spatial maps is an important aspect
of the models’ efficiency. Figure 7 shows that the addition
of the LSTM block in CNN − LSTMtm2 model results in
better performance as the model is capable of learning bet-
ter the sequential patterns. The models using frequency in-
formation (CNNps1 and CNN − LSTMps2 ) perform simi-
larly to the models using temporal information. The CNN −
LSTMps2 model with the LSTM block achieves better per-
formance (Figure 8).

The evaluation of the combined models Comb1 and
Comb3 (Table 1) demonstrates that the end-to-end train-
ing using multiple sources of information (spatial, temporal,
and frequency) is not advantageous. The Comb2 and Comb4
models perform better than those using one source of in-
formation (temporal or frequency). Figure 9 presents the
results of the different voting schemes. The performance of
the voting schemes 1, 2, and 3 (Schema1, Schema2, and
Schema3) is almost identical. However, Schema3 is slightly
more robust and stable as it seems to generalize significantly
well using the different splits (5-fold cross validation).

Model 1 Model 2 p-value Significance
Comb2 CNNtm1 0.0283 Yes
Comb2 CNNps1 0.1195 No
Comb4 CNN − LSTMtm2 0.0076 Yes
Comb4 CNN − LSTMps2 0.0247 Yes
Schema4 CNN − LSTMtm2 0.026 Yes
Schema4 CNN − LSTMps2 0.0013 Yes

Table 2: Results of the paired t-test

4. DISCUSSION AND CONCLUSION

The results of this study indicate that the denoising and ar-
tifact removal of resting-state fMRI can be very effectively
implemented using a DNN framework. The components
which are labeled as noisy are removed, and the signal is
recomposed from the remaining ones. The models of spa-
tial maps (CNNsm1

, CNNsm2
, and CNNsm3

) perform
almost identically and the accuracy is over 98%. This find-
ing demonstrates that the usage of high-resolution spatial
information, without the addition of temporal information,
can present exceptional performance. The temporal models
(CNNtm1 , and CNN − LSTMtm2 ) are less efficient than
spatial models. It is worth mentioning that the addition of the
LSTM block in CNN −LSTMtm2 model boosts the perfor-
mance significantly with an accuracy increment of almost 1%
(around 95.5%). Similarly, the frequency models (CNNps1 ,
and CNN − LSTMps2 ) perform worse than spatial mod-
els and the enhanced model CNN − LSTMps2 with the
LSTM block achieves higher evaluation metrics compared
to CNNps1 . Notably, the evaluation of combined models
(Comb2, and Comb4) and the voting schema (Schema4)
points out that the combination of time courses and power
spectrum as inputs is valuable (Table 2) and increases the
performance (accuracy over 96%). Hence, the hypothesis
that the DNN models learn the features related to frequency
automatically, given the temporal information (time courses),
does not hold [13] and adding the frequency information can
result in an improved performance of the employed scheme.

The evaluation of the combined models (Comb1, and
Comb3) demonstrates that the joint training using the three
channels of information (spatial maps, time courses, and
power spectrum) is not advantageous. Finally, the best results
are obtained by the voting Schema3 with average accuracy
of 98.37% and a very good balance between the metrics of
sensitivity and specificity. Moreover, this schema shows very
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stable performance using the different splits in 5-fold cross
validation. More precisely, the accuracy is varying from
98.31% (1st split) to 98.42% (4th split).

The main drawback of the proposed schemes (compared
to FIX) is the fact that only healthy adult brains have been
used for training the models. Hence, in order to use the
proposed scheme in studies with brains of different size or
anatomy (e.g. pediatric subjects), we would either need to
retrain the selected scheme or use transfer learning. As future
work, we intend to explore such cases with transfer learn-
ing approaches in order to evaluate the performance of our
models in task-related fMRI studies and also in pediatric sub-
jects. Furthermore, inception modules [27] can be tested in
the DNN models, as they have shown state-of-the-art results
in many Deep Learning tasks. In addition, attention mecha-
nisms can be included in the temporal and frequency models.
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