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Abstract—In 2016, World Health Organization (WHO) es-
timated that diabetes is the seventh leading cause of death
causing 1.6 million casualties globally. In this paper, we propose
a non-invasive solution through a Convolutional Neural Network
(CNN)-based Deep Learning classifier. We use the scalograms
generated out of transmissive Photoplethysmography (PPG) sig-
nals collected from MIMIC-III database to diagnose diabetes.
Different sets of inputs were sent into a slightly modified VGGNet
model, which were trained over data from 584 patients. We
provide a probabilistic score of diabetes for every patient, which
is further used for classifying patients into diabetic and non-
diabetic. The best model obtained using a combination of PPG
signals, hypertension classification, age and gender as inputs
produced an accuracy of 76.34% and area under the curve (AUC)
of 0.830 on 224 test patients. In our knowledge, this is among the
first CNN-based approaches in the literature to detect diabetes
using MIMIC-III waveforms dataset with a good performance.

Index Terms—Photoplethysmography (PPG), Vital Signs Mon-
itoring (VSM), Convolutional Neural Networks (CNN), MIMIC,
Scalogram.

I. INTRODUCTION

Diabetes is a chronic health condition that is characterized
by increasing blood glucose levels causing severe health
hazards [1]. It is reported by the World Health Organiza-
tion (WHO) that over 422 million people across the globe
suffer from diabetes. Currently, doctors utilize Oral Glucose
Tolerance Test (OGTT), Fasting Plasma Glucose (FPG) test,
Postprandial Plasma Glucose (PPG) test, Random blood sugar
test and Haemoglobin A1C (HbA1c) test to diagnose diabetes
in laboratories. But, they are invasive, expensive and time-
consuming. Hence, a continuous, non-invasive screening tool
that can diagnose diabetes accurately in quick time can be
extremely helpful, especially in places that are deprived of
medical care. This can also help in early detection of diabetes
before being sent for the confirmatory diabetes testing using
HbA1c.

Photoplethysmography (PPG) is a non-invasive medium
which uses optical technique to measure the volumetric vari-
ations of blood circulations [2]. Light from the LED falls on
the fingers/wrists and is backscattered or transmitted to the
photodiode, which measures the amount of light detected in
the form of a pulsewave. While the photodiode is placed in the
opposite side of the LED in the transmissive PPG sensor, it is
placed adjacent to the LED in the reflective mode. PPG signals

are composed of pulsatile (AC) and non-pulsatile (DC) com-
ponents [3]. While the AC component is synchronized with
the heart & related to arterial pulsation, the DC component is
related to light absorption in the tissue, vein & static blood.
The AC component consists of systolic and diastolic phases
separated by a dicrotic notch [2]. Literature suggests that PPG
sensor is widely used in continuous physiological monitoring,
vascular assessment and monitoring the autonomic functions
like Heart Rate Variability (HRV) [4], neurology [5], etc.
Some of the cardiovascular parameters that could possibly be
detected using photoplethysmography include heart rate, blood
oxygen saturation, blood pressure and arterial stiffness. These
parameters not only aid PPG signals to assess hypertension
[6], but also have direct influence on diabetic patients.

Lillia et. al. [7] says that diabetes is often associated with
chronic vascular and microvascular complications. Kiran et. al.
[8] emphasizes the risk of diabetes in older people. Bertoni et.
al. [9] mentioned that diabetes plays a major role in causing
cardiovascular disease and stroke. As PPG signals have been
effectively used in the study of vascular diseases, we make
use of them to study diabetes in patients. Chan et. al. [10]
validates the same by reporting the correlation of HbA1c and
arterial stiffness. Nirala et. al. [11] proposed a screening tool
using Support Vector Machine to detect diabetes using the
characteristics of toe photoplethysmogram by retrieving 37
features. Moreno et. al. [12] proposed a feature extraction
based Machine Learning technique using Cepstral analysis and
HRV that could serve as a screening tool for type 2 diabetes.
Chirath et. al. [13] used Linear Discriminant Analysis on
the short PPG waveforms dataset [14] to diagnose diabetes.
The time domain and frequency domain features of HRV
were extracted from the PPG signals to differentiate between
the diabetic and healthy patients by Reddy et. al. [15]. The
extracted PPG features, in time or frequency domain makes
the existing approaches sensitive only to those features either
from physiology point of view or from signal processing point
of view.

Over the past few years, the advent of Deep Learning [16]
has ushered in state-of-the-art innovations and cutting edge
research. Artificial intelligence has significantly impacted the
analysis of complex physiological signals [17]. Classification
was performed over EEG data [18] using Convolutional Neural
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Fig. 1. The proposed CNN-based classifier for diabetes prediction, consisting of (i) preprocessing; (ii) scalogram generator; (iii) convolutional block; and (iv)
fully connected block.

Networks (CNN) [19], where raw data was used as such
without deductive feature selection. Porumb et. al. [20] worked
on a Deep Learning based detection of Hypoglycemic events
using ECG signals. Robert et. al. [21] presented a Deep
Learning based approach which could serve as a potential
biomarker to detect diabetic patients. But, most of the currently
existing work on diabetes monitoring using PPG signals have
been implemented on their own datasets. The public dataset
by Liang et. al. [14] is too small a dataset to be used
for Deep Learning, as short length signals may not possess
high confidence of the obtained prediction, which may need
validation from more subjects with longer PPG signals [13].

Hence, we use PhysioNet’s MIMIC - III (Medical Informa-
tion Mart for Intensive Care) Database [22] to predict diabetes
using PPG waveforms in the MIMIC-III Waveform Database
Matched Subset [23]. It possesses recordings of several phys-
iological and vital sign signals along with the corresponding
metadata. The physiological signals include ECG, arterial
blood pressure, respiration and PPG signals while the vital sign
signals include heart rate, oxygen saturation, systolic, mean
and diastolic blood pressure. We identify the diabetes patients
using the ICD-9 code which are labelled for every patient in
the MIMIC-III clinical database. Our contribution is that we
developed a CNN-based classification algorithm using PPG
signals and metadata that can learn the characteristics of the
diabetic patients from the PPG scalograms dynamically.

II. CNN-BASED CLASSIFICATION ALGORITHM

This sections explains the classification algorithm in details.
It consists of (i) preprocessing; (ii) scalogram generation; and
our (iii) CNN-based classifier.

A. Pre-processing

We utilize the PPG signals in the MIMIC-III waveform
database to diagnose diabetes. These are transmissive signals
collected from the fingertips of patients. The patient with ICD-
9 code starting with 250 is labeled as a diabetic patient. The
transmissive infrared PPG signals are collected at a sampling
frequency of 125 Hz. The varieties of diabetes that are covered
by type 1 and type 2 include diabetes mellitus, diabetes with
ketoacidosis and diabetes with hyperosmolarity [24].

We use WFDB Python package to read and process the
waveforms of MIMIC-III dataset. The ultra-low frequency sig-
nals are introduced due to respiration, which causes an effect
known as baseline wandering [25]. A high-pass Butterworth
filter of 0.5 Hz is implemented to remove the baseline wander-
ing caused by motion, impedance of the sensor and respiration.
The amplitude of the signals are already normalized by the
dataset providers. We break the long signal into segments
of 30 seconds each. In order to differentiate the important
features in PPG from motion-induced noise, we need to reject
the corrupted segments with motion artifacts, for which we
design a simple signal quality check algorithm using template
matching. We reconstruct the PPG signal using the peaks
extracted, and perform least-square based linear regression of
the reconstructed template signal with the original signal to
check for correlation. The segments with correlation coeffi-
cient greater than 0.8 are considered to be uncorrupted signals
that can be passed into our Deep Learning model. Signals
which don’t follow morphology (eg. Notch on the anacrotic
phase of PPG cycle contrary to the usual catacrotic phase in the
MIMIC-III dataset) are neglected from the dataset. With the
advent of Deep Learning, it learns features specific to diabetic
& non-diabetic patients by its own and learns to be indifferent
to sudden disturbances observed in the signal.

B. Scalogram from PPG signals

We make use of a scalogram technique to pass the input
as an image to the Deep Learning model in order to detect
diabetes [26]. Scalogram is defined the absolute value of the
Continuous Wavelet Transform (CWT) of a signal, plotted as a
function of time and frequency [27]. Scalograms can identify
the low-frequency and fast-changing frequency components
of the signal. It is important to note that the PPG signals are
one-dimensional vector signals. The one-dimensional temporal
segments which pass the signal quality check are converted
into a scalogram with ’jet’ colormap that contains 30 seconds
of PPG data. It is an RGB image obtained via Continuous
Wavelet Transform to preserve the time-frequency localization
parameters of non-stationary signals. Scalograms offer better
time localization for short-duration, high-frequency events,
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Fig. 2. PPG waveforms representing 10 seconds that indicate i) diabetic patients - a) and b) ; ii) non-diabetic patients - c) and d)

and better frequency localization for low-frequency, longer-
duration events compared to Short Time Fourier Transform.
It was learnt from Liang et. al. [26] that PPG signals have
rich time-frequency domain information as they are a com-
bination of heart activity, vascular relaxation processes, and
microcirculation system status. The wavelet coefficients of a
Continuous Wavelet Transform can be used to locate different
frequency components. We extract the scalograms with 0.5-10
Hz bandwidth to study the time-frequency domain information
of diabetic and non-diabetic patients. The RGB scalograms are
very helpful for the CNN to extract the features efficiently and
learn accordingly in the process of training over the dataset.

C. CNN architecture

Each scalogram has dimensions of 640 x 480 x 3. We
normalize the pixel values of the image and resize it to 320
x 240 x 3 before feeding into the CNN so as to perform
computation faster, by preserving the aspect ratio. The resized
image was sent into a slightly modified VGGNet architecture
[28]. The CNN performs the role of a feature extractor in this
work, as followed by Liang et. al. [26].

As shown in Fig.1, the primary model possesses 9 convo-
lutional layers, 3 pooling layers and 1 global average pooling
layer. The same kernel size of 3x3 was used for all the
convolutional layers. The first two convolutions are done
successively in the following way where 64 3x3 filters are
passed on to the input feed. Pooling is also done for this layer.
We repeat the same using two convolutions of 128, 256 and
three convolutions of 512 3x3 filters now, and then pool the
convolved feed using global average pooling to obtain a one-
dimensional arrangement of neurons. We pass this through a
fully connected network containing 2 dense layers, and finally
to a classifier which has 2 neurons, where each one represents
a class - non-diabetic and diabetic. In addition to the PPG
input, we add additional fully connected network modules
with 3 dense layers for other inputs such as age, gender,
hypertension classification and heart rate. We concatenate the
additional models along with the primary PPG model before
passing it through the Softmax classifier that can be used to
classify non-diabetic and diabetic patients.

We use a batch size of 8, running for 20 epochs set at a
learning rate of 0.001 using Adam optimizer and used Softmax
classifier in the final layer of fully connected network to train
different models with the above mentioned set of parameters
as inputs. We made use of Tesla K80 GPU.

III. EVALUATION AND RESULTS

A total of 808 patients are taken for the study randomly
from the large MIMIC dataset, of which the data from 584
patients were used for training, and 224 patients for testing
manually. Out of 808 patients, 341 patients are diagnosed
with diabetes. 171 patients diagnosed as diabetic are male,
and 170 patients diagnosed as diabetic are female. A total of
595 patients have hypertension, of which 290 patients also
have diabetes. From this, we can infer that around 85.04% of
diabetic patients have hypertension as co-morbidity. A slightly
modified VGGNet model (Fig. 1) was used for training. The
test results were output by averaging the probabilistic scores of
diabetes obtained for various segments, thereby providing one
score for each patient, ranging from 0 to 1. This score was
thresholded with different cut-offs for each model obtained
from ROC curve to classify a patient as non-diabetic and
diabetic.

Out of several CNN architectures that were tried, VGGNet
gave better results for the dataset that we used. This test was
carried out with different set of inputs. Four different models
were built using different set of inputs such as i) PPG, ii) PPG
+ hypertension classification, iii) PPG + hypertension classi-
fication + age + gender, iv) PPG + hypertension classification
+ age + gender + heart rate. We see that the combination of
PPG signals in addition to the age, gender and hypertension
classification parameter give us the best results. The confusion
matrix (Fig. 3) provides us a better understanding of true
and false predictions of diabetic and non-diabetic patients
against the ground truth. In order to understand the diagnostic
capability of the classification models at different thresholds
to predict diabetes, we make use of Receiver Operating
Characteristic (ROC) curve. Area under the ROC curve (AUC)
gives an aggregate measure of performance across different
classification thresholds. The ROC curve (Fig. 4) depicts
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Fig. 3. Confusion matrix of the best performing model

that the input combination of PPG signals with age, gender,
heart rate and hypertension classification achieved the best
performance with an AUC value of 0.830. From the tabulation
(Table II), we can observe that the sensitivity (Sens.) for
our best model is 76.66 %, specificity (Spec.) is 76.11 %
and accuracy (Acc.) is 76.34 %. The results are comparable
to the gold standards shown in the tabulation I for diabetes
monitoring and the few existing research works that are present
in this area, performing better in a few study parameters. It can
also be seen from the tabulation II the performance degrades
on the addition of heart rate to the best performing model.
This indicates that the model gets confused on the addition of
heart rate. It can be keenly understood from the table II that the
model with hypertension classification as an additional input
along with the PPG signals performs relatively better than the
model built using only PPG waveforms.

TABLE I
COMPARISON OF OUR RESULTS AGAINST EXISTING BENCHMARKS

Study Ours FPG HbA1c Avram [21] Nirala [11] Reddy [15]
Sens. 76.66 79.0 86.3 81.0 98.7 -
Spec. 76.11 82.8 75.8 54.0 96.6 -
Acc. 76.34 - - - - 89.0
AUC 0.830 0.890 0.859 - 0.890 -

TABLE II
DIFFERENT INPUTS SENT AND THEIR RESPECTIVE VALUES

Parameters Sens. Spec. Acc. AUC Cut-off
PPG 72.2 73.13 72.76 0.793 0.45

PPG + BP 71.1 76.8 74.55 0.808 0.41
PPG + BP + Age 76.66 76.11 76.34 0.827 0.50

+ Gender
PPG + BP + Age 68.88 69.4 69.19 0.782 0.42
+ Gender + HR

Fig. 4. ROC curves of different input combinations of PPG signals with age,
gender, heart rate and hypertension classification. The dashed line represents
non-discriminative test

IV. DISCUSSION

It was mentioned in the work of Nirala et. al. [11] that an
absence of dicrotic notch can be observed in the PPG signals
of diabetic patients. But, on exhaustive analysis of the MIMIC-
III dataset, we observe that the absence of dicrotic notch did
not turn out to be a definitive feature for diabetes. On pursuing
further research, it was found that the absence of dicrotic notch
can be attributed to various other factors such as aging [29],
cardiovascular diseases [30] etc. Hence, using the absence of
dicrotic notch as a feature to detect diabetes might not be
appropriate. In addition, the signals are very much susceptible
to motion artifacts which can weaken the performance of
the model. These are some of the main reasons as to why
conventional hand-crafted Machine Learning techniques would
not turn out to be very effective. Deep Learning can be very
instrumental in such situations.

It has to be noted that few of the publications have high-
lighted the significance of very low frequency signals in under-
standing the cardiovascular diseases. But, a 0.5 Hz low-pass
filter is very essential to correct the baseline wandering effect.
Baseline wandering can be very detrimental in hampering the
morphology of PPG signals. Hence, it is essential to check into
ways of preserving very low frequency signals and perform
baseline correction simultaneously.

We tried analyzing diabetes using the HRV feature, by
retrieving the RMSSD values of 30 sec segments of patients.
The results were not satisfactory. We learnt from [31] that
time-domain analysis of HRV can be more suitable for longer
signal lengths. We obtain better results on adding age, gender,
hypertension classification as input along with the PPG input.
In our knowledge, this is the first work of diabetes prediction
over the MIMIC-III Waveform Database, which was publicly
released in April 2020. It is also the first work that uses a scalo-
gram technique combined with CNN to diagnose diabetes.
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V. CONCLUSION

Through this work, we show that our proposed CNN-based
classifier can perform as accurate as invasive techniques avail-
able for diabetes monitoring and progression. Deep Learning
based medical diagnostics can significantly impact healthcare
by providing instantaneous diagnoses thereby keeping check
of the health of patients efficiently without much manpower.
This technique can be used by doctors as a screening test for
diabetes before proceeding with the medical checkup. This can
further be improved by increasing the training dataset size by
adding more data from the MIMIC-III dataset, which could
boost the performance of our model to reach FPG test level.
We also explained that Deep Learning techniques can function
better than conventional hand-crafted Machine Learning tech-
niques due to the presence of motion artifacts and difficulty
in determining marked changes in the morphology of PPG
signals. We could further improve the model by testing it
over our in-house PPG dataset with appropriate clinical ground
truths. The Deep Learning model could be trained to neglect
the artifacts from the data by itself in future iterations.
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